Degradation of Bioresorbable Composites: Tricalcium Phosphate Case Studies

  • Ismael Moreno-GomezEmail author
Part of the Springer Theses book series (Springer Theses)


As previously mentioned in the introductory chapter, studying the degradation of biocomposites is a time and resource-consuming process. Therefore it is logical to try and maximise the information that can be extracted from already published experimental data. Although inaccurate and incomplete information in composite characterisation are to be expected, analysing these published degradation data with the computational models obtained from the general modelling framework based on an extended version of Pan et al.’s TCP-polyester composite degradation model [1] and presented in Chap. 3 is, in the author’s opinion, still a worthy approach. By doing so, a global degradation map for biocomposites can be built. This map, albeit incomplete, will aid understanding of the biocomposite degradation mechanisms and highlight areas of particular interest due to their appropriate degradation profiles.


  1. 1.
    Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.CrossRefGoogle Scholar
  2. 2.
    Kobayashi, S., & Yamaji, S. (2014). Analytical prediction of hydrolysis behavior of tricalcium phosphate/poly-L-lactic acid composites in simulated body environment. Advanced Composite Materials, 23(3), 211–223.CrossRefGoogle Scholar
  3. 3.
    Aunoble, S., Clément, D., Frayssinet, P., Harmand, M. F., & Le Huec, J. C. (2006). Biological performance of a new \(\beta \)-TCP/PLLA composite material for applications in spine surgery: In vitro and in vivo studies. Journal of Biomedical Materials Research Part A, 78(2), 416–422.CrossRefGoogle Scholar
  4. 4.
    Adamus, A., et al. (2012). In vitro degradation of \(\beta \)-tricalcium phosphate reinforced poly (L-lactic acid). In Materials science forum (Vol. 714, pp. 283–290). Trans Tech PublicationsGoogle Scholar
  5. 5.
    Kang, Y., Xu, X., Yin, G., Chen, A., Liao, L., & Yao, Y., et al. (2007). A comparative study of the in vitro degradation of poly(L-lactic acid)/\(\beta \)-tricalcium phosphate scaffold in static and dynamic simulated body fluid. European Polymer Journal, 43(5), 1768–1778.Google Scholar
  6. 6.
    Kang, Y., Yao, Y., Yin, G., Huang, Z., Liao, X., Xu, X., et al. (2009). A study on the in vitro degradation properties of poly(L-lactic acid)/\(\beta \)-tricalcuim phosphate (PLLA/\(\beta \)-TCP) scaffold under dynamic loading. Medical Engineering & Physics, 31(5), 589–594.CrossRefGoogle Scholar
  7. 7.
    Daculsi, G., Goyenvalle, E., Cognet, R., Aguado, E., & Suokas, E. O. (2011). Osteoconductive properties of poly(96L/4D-lactide)/beta-tricalcium phosphate in long term animal model. Biomaterials, 32(12), 3166–3177.CrossRefGoogle Scholar
  8. 8.
    Niemelä, T. (2005). Effect of \(\beta \)-tricalcium phosphate addition on the in vitro degradation of self-reinforced poly-L,D-lactide. Polymer Degradation and Stability, 89(3), 492–500.CrossRefGoogle Scholar
  9. 9.
    Zheng, X., Zhou, S., Yu, X., Li, X., Feng, B., Qu, S., et al. (2008). Effect of in vitro degradation of poly(D, L-lactide)/\(\beta \)-tricalcium composite on its shape-memory properties. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 86(1), 170–180.CrossRefGoogle Scholar
  10. 10.
    Lin, F.-H., Chen, T.-M., Lin, C.-P., & Lee, C.-J. (1999). The merit of sintered PDLLA/TCP composites in management of bone fracture internal fixation. Artificial Organs, 23(2), 186–194.CrossRefGoogle Scholar
  11. 11.
    Heidemann, W., Jeschkeit, S., Ruffieux, K., Fischer, J. H., Wagner, M., Krüger, G., et al. (2001). Degradation of poly(D, L)lactide implants with or without addition of calciumphosphates in vivo. Biomaterials, 22(17), 2371–2381.CrossRefGoogle Scholar
  12. 12.
    Niemelä, T., Kellomäki, M., & Törmälä, P. (2004). In vitro degradation of osteoconductivepoly-L/DL-lactide/\(\beta \)-TCP composites. In Key engineering materials (Vol. 254, pp. 509–512). Trans Tech PublicationGoogle Scholar
  13. 13.
    Ignatius, A. A., Wolf, S., Augat, P., & Claes, L. E. (2001b). Composites made of rapidly resorbable ceramics and poly(lactide) show adequate mechanical properties for use as bone substitute materials. Journal of Biomedical Materials Research Part A, 57(1), 126–131.CrossRefGoogle Scholar
  14. 14.
    Ignatius, A. A., Augat, P., & Claes, L. E. (2001a). Degradation behavior of composite pins made of tricalcium phosphate and poly(L, DL-lactide). Journal of Biomaterials Science, Polymer Edition, 12(2), 185–194.CrossRefGoogle Scholar
  15. 15.
    Haaparanta, A.-M., Haimi, S., Ellä, V., Hopper, N., Miettinen, S., Suuronen, R., et al. (2010). Porous polylactide/\(\beta \)-tricalcium phosphate composite scaffolds for tissue engineering applications. Journal of Tissue Engineering and Regenerative Medicine, 4(5), 366–373.CrossRefGoogle Scholar
  16. 16.
    Ahola, N., Männistö, N., Veiranto, M., Karp, M., Rich, J., Efimov, A., et al. (2013). An in vitro study of composites of poly(L-lactide-co-\(\varepsilon \)-caprolactone), \(\beta \)-tricalcium phosphate and ciprofloxacin intended for local treatment of osteomyelitis. Biomatter, 3(2), e23162.CrossRefGoogle Scholar
  17. 17.
    Ahola, N., Veiranto, M., Rich, J., Efimov, A., Hannula, M., Seppälä, J., et al. (2012). Hydrolytic degradation of composites of poly(L-lactide-co-\(\varepsilon \)-caprolactone)70/30 and \(\beta \)-tricalcium phosphate. Journal of Biomaterials Applications, 28(4), 529–543.CrossRefGoogle Scholar
  18. 18.
    Kikuchi, M., Koyama, Y., Yamada, T., Imamura, Y., Okada, T., Shirahama, N., et al. (2004). Development of guided bone regeneration membrane composed of \(\beta \)-tricalcium phosphate and poly(L-lactide-co-glycolide-co-\(\varepsilon \)-caprolactone) composites. Biomaterials, 25(28), 5979–5986.CrossRefGoogle Scholar
  19. 19.
    Yang, F., Cui, W., Xiong, Z., Liu, L., Bei, J., & Wang, S. (2006). Poly(L, L-lactide-co-glycolide)/tricalcium phosphate composite scaffold and its various changes during degradation in vitro. Polymer Degradation and Stability, 91(12), 3065–3073.CrossRefGoogle Scholar
  20. 20.
    Yang, Y., Zhao, Y., Tang, G., Li, H., Yuan, X., & Fan, Y. (2008). In vitro degradation of porous poly(L-lactide-co-glycolide)/\(\beta \)-tricalcium phosphate (PLGA/\(\beta \)-TCP) scaffolds under dynamic and static conditions. Polymer Degradation and Stability, 93(10), 1838–1845.CrossRefGoogle Scholar
  21. 21.
    Jin, H.-H., Min, S.-H., Song, Y.-K., Park, H.-C., & Yoon, S.-Y. (2010). Degradation behavior of poly(lactide-co-glycolide)/\(\beta \)-TCP composites prepared using microwave energy. Polymer Degradation and Stability, 95(9), 1856–1861.CrossRefGoogle Scholar
  22. 22.
    Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.CrossRefGoogle Scholar
  23. 23.
    Bennett, S. M. (2012). Degradation mechanisms of PLGA/ \(\alpha \)-TCP composites for orthopaedic applications. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  24. 24.
    Ege, D., Best, S., & Cameron, R. (2014). The degradation behaviour of nanoscale HA/PLGA and \(\alpha \)-TCP/PLGA composites. Bioinspired, Biomimetic and Nanobiomaterials, 3, BBN2.CrossRefGoogle Scholar
  25. 25.
    Ege, D. (2012). Mechanical and degradation properties of calcium phosphate/biodegradable polymer composites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  26. 26.
    Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.CrossRefGoogle Scholar
  27. 27.
    Yang, Z. (2009). Development and characterisation of bioactive, bioresorbable\(\alpha \)-tricalcium phosphate/poly(D,L-lactide-co-glycolide) nanocomposites for bone substitution and fixation. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  28. 28.
    Mellon, V. (2003). Degradation study of poly(lactide-co-glycolic) acid and alpha or beta tricalcium phosphate composites - non porous. Unpublished research at University of Cambridge.Google Scholar
  29. 29.
    Barrett, C. E., & Cameron, R. E. (2014). X-ray microtomographic analysis of \(\alpha \)-tricalcium phosphate-poly(lactic-co-glycolic) acid nanocomposite degradation. Polymer, 55(16), 4041–4049.CrossRefGoogle Scholar
  30. 30.
    Barrett, C. E. (2013). The degradation behaviour of tricalcium phosphate - poly(lactide-co-glycolide) nanocomposites. Ph.D. thesis, Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  31. 31.
    Ehrenfried, L. M., Patel, M. H., & Cameron, R. E. (2008). The effect of tri-calcium phosphate (TCP) addition on the degradation of polylactide-co-glycolide (PLGA). Journal of Materials Science: Materials in Medicine, 19(1), 459–466.Google Scholar
  32. 32.
    Imai, Y., Fukuzawa, A., & Watanabe, M. (1999a). Effect of blending tricalcium phosphate on hydrolytic degradation of a block polyester containing poly(L-lactic acid) segment. Journal of Biomaterials Science, Polymer Edition, 10(7), 773–786.CrossRefGoogle Scholar
  33. 33.
    Kikuchi, M., Koyama, Y., Takakuda, K., Miyairi, H., Shirahama, N., & Tanaka, J. (2002). In vitro change in mechanical strength of \(\beta \)-tricalcium phosphate/copolymerized poly-L-lactide composites and their application for guided bone regeneration. Journal of Biomedical Materials Research, 62(2), 265–272.CrossRefGoogle Scholar
  34. 34.
    Imai, Y., Nagai, M., & Watanabe, M. (1999b). Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment. Journal of Biomaterials Science, Polymer Edition, 10(4), 421–432.CrossRefGoogle Scholar
  35. 35.
    Elliott, J. C. (2013). Structure and chemistry of the apatites and other calcium orthophosphates (Vol. 18). Elsevier.Google Scholar
  36. 36.
    Bates, R. G. (1951). First dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C: limitations of the electromotive force method for moderately strong acids. Journal of Research of the National Bureau of Standards, 47, 127–134.CrossRefGoogle Scholar
  37. 37.
    Bates, R. G., & Acree, S. (1943). pH values of certain phosphate-chloride mixtures, and the second dissociation constant of phosphoric acid from 0\(^\circ \) to 60\(^\circ \)C. Journal of Research of the National Bureau of Standards, 30, 129–155.CrossRefGoogle Scholar
  38. 38.
    Vanderzee, C. E., & Quist, A. S. (1961). The third dissociation constant of orthophosphoric acid. The Journal of Physical Chemistry, 65(1), 118–123.CrossRefGoogle Scholar
  39. 39.
    PubChem (2005c). CID: 24456. Retrieved September 1, 2016 from
  40. 40.
    Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41(17), 3130–3146.CrossRefGoogle Scholar
  41. 41.
    Neuendorf, R., Saiz, E., Tomsia, A., & Ritchie, R. (2008). Adhesion between biodegradable polymers and hydroxyapatite: Relevance to synthetic bone-like materials and tissue engineering scaffolds. Acta Biomaterialia, 4(5), 1288–1296.CrossRefGoogle Scholar
  42. 42.
    Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.CrossRefGoogle Scholar
  43. 43.
    Bryar, S. (2015). Experimental study of the dissolution rate of\(\beta \)-tricalcium phosphate for use in biodegradable composites for orthopaedic applications. Part III individual research project: Department of Materials Science and Metallurgy, University of Cambridge.Google Scholar
  44. 44.
    Bohner, M. (2000). Calcium orthophosphates in medicine: from ceramics to calcium phosphate cements. Injury, 31, D37–D47.CrossRefGoogle Scholar
  45. 45.
    Daculsi, G., LeGeros, R., LeGeros, J., & Mitre, D. (1991). Lattice defects in calcium phosphate ceramics: high resolution TEM ultrastructural study. Journal of Applied Biomaterials, 2(3), 147–152.CrossRefGoogle Scholar
  46. 46.
    LeGeros, R. Z. (1993). Biodegradation and bioresorption of calcium phosphate ceramics. Clinical Materials, 14(1), 65–88.CrossRefGoogle Scholar
  47. 47.
    Bohner, M., Lemaître, J., & Ring, T. A. (1997). Kinetics of dissolution of \(\beta \)-tricalcium phosphate. Journal of Colloid and Interface Science, 190(1), 37–48.CrossRefGoogle Scholar
  48. 48.
    Brazda, L., Rohanova, D., & Helebrant, A. (2008). Kinetics of dissolution of calcium phosphate (Ca-P) bioceramics. Processing and Application of Ceramics, 2(1), 57–62.CrossRefGoogle Scholar
  49. 49.
    Kirkwood, T. B. (1979). Geometric means and measures of dispersion. Biometrics, 35, 908–909.Google Scholar
  50. 50.
    Limpert, E., Stahel, W. A., & Abbt, M. (2001). Log-normal distributions across the sciences: Keys and clues: On the charms of statistics, and how mechanical models resembling gambling machines offer a link to a handy way to characterize log-normal distributions, which can provide deeper insight into variability and probability-normal or log-normal: That is the question. AIBS Bulletin, 51(5), 341–352.Google Scholar
  51. 51.
    Lam, C. X., Hutmacher, D. W., Schantz, J.-T., Woodruff, M. A., & Teoh, S. H. (2009). Evaluation of polycaprolactone scaffold degradation for 6 months in vitro and in vivo. Journal of Biomedical Materials Research Part A, 90(3), 906–919.CrossRefGoogle Scholar
  52. 52.
    Li, S., Garreau, H., & Vert, M. (1990a). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 1: poly(DL-lactic acid). Journal of Materials Science: Materials in Medicine, 1, 123–130.Google Scholar
  53. 53.
    Li, S., Garreau, H., & Vert, M. (1990b). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 2: degradation of lactide-glycolide copolymers: PLA37.5GA25 and PLA75GA25. Journal of Materials Science: Materials in Medicine, 1(3), 131–139.Google Scholar
  54. 54.
    Li, S., Garreau, H., & Vert, M. (1990c). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media: Part 3: Influence of the morphology of poly(L-lactic acid). Journal of Materials Science: Materials in Medicine, 1, 198–206.Google Scholar
  55. 55.
    Hurrell, S., & Cameron, R. E. (2001a). Polyglycolide: degradation and drug release. Part I: Changes in morphology during degradation. Journal of Materials Science: Materials in Medicine, 12(9), 811–816.Google Scholar
  56. 56.
    Hurrell, S., & Cameron, R. E. (2001b). Polyglycolide: degradation and drug release. Part II: Drug release. Journal of Materials Science: Materials in Medicine, 12(9), 817–820.Google Scholar
  57. 57.
    Pitt, C. G., Chasalow, F., Hibionada, Y., Klimas, D., & Schindler, A. (1981a). Aliphatic polyesters. I. The degradation of poly(\(varepsilon \)-caprolactone) in vivo. Journal of Applied Polymer Science, 26(11), 3779–3787.CrossRefGoogle Scholar
  58. 58.
    Pitt, G., Gratzl, M., Kimmel, G., Surles, J., & Sohindler, A. (1981b). Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(\(\varepsilon \)-caprolactone), and their copolymers in vivo. Biomaterials, 2(4), 215–220.CrossRefGoogle Scholar
  59. 59.
    Grizzi, I., Garreau, H., Li, S., & Vert, M. (1995). Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials, 16(4), 305–311.CrossRefGoogle Scholar
  60. 60.
    Fu, K., Pack, D. W., Klibanov, A. M., & Langer, R. (2000). Visual evidence of acidic environment within degrading poly(lactic-co-glycolic acid) (PLGA) microspheres. Pharmaceutical Research, 17(1), 100–106.CrossRefGoogle Scholar
  61. 61.
    von Burkersroda, F., Schedl, L., & Göpferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23(21), 4221–4231.CrossRefGoogle Scholar
  62. 62.
    McDonald, P. F., Lyons, J. G., Geever, L. M., & Higginbotham, C. L. (2010). In vitro degradation and drug release from polymer blends based on poly(DL-lactide), poly(L-lactide-glycolide) and poly(\(\varepsilon \)-caprolactone). Journal of Materials Science, 45(5), 1284–1292.CrossRefGoogle Scholar
  63. 63.
    Vert, M., Li, S., & Garreau, H. (1991). More about the degradation of LA/GA-derived matrices in aqueous media. Journal of Controlled Release, 16(1–2), 15–26.CrossRefGoogle Scholar
  64. 64.
    Li, S., & Vert, M. (2002). Biodegradation of aliphatic polyesters. In Degradable polymers (pp. 71–131). Springer.Google Scholar
  65. 65.
    Alexis, F. (2005). Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 54(1), 36–46.CrossRefGoogle Scholar
  66. 66.
    Armentano, I., Dottori, M., Fortunati, E., Mattioli, S., & Kenny, J. (2010). Biodegradable polymer matrix nanocomposites for tissue engineering: a review. Polymer Degradation and Stability, 95(11), 2126–2146.CrossRefGoogle Scholar
  67. 67.
    Rezwan, K., Chen, Q., Blaker, J., & Boccaccini, A. R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials, 27(18), 3413–3431.CrossRefGoogle Scholar
  68. 68.
    Kwon, K.-A., Shepherd, J. H., Shepherd, D. V., Moreno-Gomez, I., & Best, S. M. (2016). Nanocomposites for bone repair. In E. San Thian, J. Huang & M. Aizawa, (Eds.), Nanobioceramics for Healthcare Applications, (Chap. 9, pp. 239–298). Singapore: World Scientific.Google Scholar
  69. 69.
    Speight, J. G., et al. (2005). Lange’s handbook of chemistry (Vol. 1). New York: McGraw-Hill.Google Scholar
  70. 70.
    Van de Velde, K., & Kiekens, P. (2002). Biopolymers: overview of several properties and consequences on their applications. Polymer Testing, 21(4), 433–442.CrossRefGoogle Scholar
  71. 71.
    Zhu, Y., Leong, M. F., Ong, W. F., Chan-Park, M. B., & Chian, K. S. (2007). Esophageal epithelium regeneration on fibronectin grafted poly(L-lactide-co-caprolactone)(PLLC) nanofiber scaffold. Biomaterials, 28(5), 861–868.CrossRefGoogle Scholar
  72. 72.
    Mikos, A. G., Sarakinos, G., Leite, S. M., Vacant, J. P., & Langer, R. (1993). Laminated three-dimensional biodegradable foams for use in tissue engineering. Biomaterials, 14(5), 323–330.CrossRefGoogle Scholar
  73. 73.
    Scientific Polymer, Inc. (2013). Polymer density data. Retrieved September 1, 2016 from

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations