Literature Review

  • Ismael Moreno-GomezEmail author
Part of the Springer Theses book series (Springer Theses)


This chapter briefly discusses relevant literature on the degradation mechanisms of bioresorbable composites and the computational models developed to characterise them. As mentioned in the introductory chapter, the harvest and analysis of published experimental degradation data from bioresorbable composites is one of the main objectives of this thesis. Therefore, a majority of the literature on biocomposite degradation is presented in the following chapters and to avoid repetition, only introductory literature is included here.


  1. 1.
    Williams, D. (1999). The Williams dictionary of biomaterials. Liverpool University Press.Google Scholar
  2. 2.
    Arshady, R. (2003). Biodegradable polymers, Citus Reference Series. Citus Books.Google Scholar
  3. 3.
    Neumann, M., & Epple, M. (2006). Composites of calcium phosphate and polymers as bone substitution materials. European Journal of Trauma, 32(2), 125–131.CrossRefGoogle Scholar
  4. 4.
    Horton, C. E., Adamson, J., Mladick, R., & Carraway, J. (1974). Vicryl synthetic absorbable sutures. The American Surgeon, 40(12), 729–731.Google Scholar
  5. 5.
    Middleton, J. C., & Tipton, A. J. (2000). Synthetic biodegradable polymers as orthopedic devices. Biomaterials, 21(23), 2335–2346.CrossRefGoogle Scholar
  6. 6.
    Van de Velde, K., & Kiekens, P. (2002). Biopolymers: Overview of several properties and consequences on their applications. Polymer Testing, 21(4), 433–442.CrossRefGoogle Scholar
  7. 7.
    Woodruff, M. A., & Hutmacher, D. W. (2010). The return of a forgotten polymer-polycaprolactone in the 21st century. Progress in Polymer Science, 35(10), 1217–1256.Google Scholar
  8. 8.
    Södergård, A., & Stolt, M. (2002). Properties of lactic acid based polymers and their correlation with composition. Progress in Polymer Science, 27(6), 1123–1163.CrossRefGoogle Scholar
  9. 9.
    Vert, M., Schwarch, G., & Coudane, J. (1995). Present and future of PLA polymers. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 32(4), 787–796.CrossRefGoogle Scholar
  10. 10.
    Cameron, R., & Kamvari-Moghaddam, A. (2012). Synthetic bioresorbable polymers. In Durability and Reliability of Medical Polymers (pp. 96–118). Elsevier.Google Scholar
  11. 11.
    Smith, M. B., & March, J. (2006). March’s advanced organic chemistry. New York: Wiley.Google Scholar
  12. 12.
    Li, S., et al. (1999). Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids. Journal of Biomedical Materials Research, 48(3), 342–353.CrossRefGoogle Scholar
  13. 13.
    Pitt, G., Gratzl, M., Kimmel, G., Surles, J., & Sohindler, A. (1981). Aliphatic polyesters II. The degradation of poly(DL-lactide), poly(\(\varepsilon \)-caprolactone), and their copolymers in vivo. Biomaterials, 2(4), 215–220.CrossRefGoogle Scholar
  14. 14.
    Pitt, C. G., Chasalow, F., Hibionada, Y., Klimas, D., & Schindler, A. (1981). Aliphatic polyesters. I. The degradation of poly(\(\varepsilon \)-caprolactone) in vivo. Journal of Applied Polymer Science, 26(11), 3779–3787.CrossRefGoogle Scholar
  15. 15.
    Siparsky, G. L., Voorhees, K. J., & Miao, F. (1998). Hydrolysis of polylactic acid (PLA) and polycaprolactone (PCL) in aqueous acetonitrile solutions: Autocatalysis. Journal of Environmental Polymer Degradation, 6(1), 31–41.CrossRefGoogle Scholar
  16. 16.
    Shih, C. (1995a). Chain-end scission in acid catalyzed hydrolysis of poly(D, L-lactide) in solution. Journal of Controlled Release, 34(1), 9–15.CrossRefGoogle Scholar
  17. 17.
    Shih, C. (1995b). A graphical method for the determination of the mode of hydrolysis of biodegradable polymers. Pharmaceutical Research, 12(12), 2036–2040.CrossRefGoogle Scholar
  18. 18.
    De Jong, S., Arias, E. R., Rijkers, D., Van Nostrum, C., Kettenes-Van den Bosch, J., & Hennink, W. (2001). New insights into the hydrolytic degradation of poly(lactic acid): Participation of the alcohol terminus. Polymer, 42(7), 2795–2802.CrossRefGoogle Scholar
  19. 19.
    Belbella, A., Vauthier, C., Fessi, H., Devissaguet, J.-P., & Puisieux, F. (1996). In vitro degradation of nanospheres from poly(D, L-lactides) of different molecular weights and polydispersities. International Journal of Pharmaceutics, 129(1–2), 95–102.CrossRefGoogle Scholar
  20. 20.
    Park, T. G. (1995). Degradation of poly(lactic-co-glycolic acid) microspheres: Effect of copolymer composition. Biomaterials, 16(15), 1123–1130.CrossRefGoogle Scholar
  21. 21.
    Gleadall, A., Pan, J., Kruft, M.-A., & Kellomäki, M. (2014). Degradation mechanisms of bioresorbable polyesters. Part 1. Effects of random scission, end scission and autocatalysis. Acta Biomaterialia, 10(5), 2223–2232.CrossRefGoogle Scholar
  22. 22.
    Farrar, D. (2008). Modelling of the degradation process for bioresorbable polymers. In Degradation rate of bioresorbable materials (pp. 183–206). Elsevier.Google Scholar
  23. 23.
    von Burkersroda, F., Schedl, L., & Göpferich, A. (2002). Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials, 23(21), 4221–4231.CrossRefGoogle Scholar
  24. 24.
    Li, S., Garreau, H., & Vert, M. (1990a). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 1: Poly(DL-lactic acid). Journal of Materials Science: Materials in Medicine, 1, 123–130.Google Scholar
  25. 25.
    Li, S., Garreau, H., & Vert, M. (1990). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media. Part 2: Degradation of lactide-glycolide copolymers: PLA37.5GA25 and PLA75GA25. Journal of Materials Science: Materials in Medicine, 1(3), 131–139.Google Scholar
  26. 26.
    Li, S., Garreau, H., & Vert, M. (1990c). Structure-property relationships in the case of the degradation of massive poly(\(\alpha \)-hydroxy acids) in aqueous media: Part 3: Influence of the morphology of poly(L-lactic acid). Journal of Materials Science: Materials in Medicine, 1, 198–206.Google Scholar
  27. 27.
    Hurrell, S., & Cameron, R. E. (2001). Polyglycolide: Degradation and drug release. Part I: Changes in morphology during degradation. Journal of Materials Science: Materials in Medicine, 12(9), 811–816.Google Scholar
  28. 28.
    Hurrell, S., & Cameron, R. E. (2001). Polyglycolide: Degradation and drug release. Part II: Drug release. Journal of Materials Science: Materials in Medicine, 12(9), 817–820.Google Scholar
  29. 29.
    Hurrell, S., Milroy, G. E., & Cameron, R. E. (2003). The distribution of water in degrading polyglycolide. Part I: Sample size and drug release. Journal of Materials Science: Materials in Medicine, 14(5), 457–464.Google Scholar
  30. 30.
    Huang, M.-H., Li, S., Hutmacher, D. W., Coudane, J., & Vert, M. (2006). Degradation characteristics of poly(\(\varepsilon \)-caprolactone)-based copolymers and blends. Journal of Applied Polymer Science, 102(2), 1681–1687.CrossRefGoogle Scholar
  31. 31.
    Grizzi, I., Garreau, H., Li, S., & Vert, M. (1995). Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence. Biomaterials, 16(4), 305–311.CrossRefGoogle Scholar
  32. 32.
    Alexis, F. (2005). Factors affecting the degradation and drug-release mechanism of poly(lactic acid) and poly[(lactic acid)-co-(glycolic acid)]. Polymer International, 54(1), 36–46.CrossRefGoogle Scholar
  33. 33.
    Li, S., & Vert, M. (2002). Biodegradation of aliphatic polyesters. Degradable polymers (pp. 71–131). Berlin: Springer.CrossRefGoogle Scholar
  34. 34.
    Lyu, S., & Untereker, D. (2009). Degradability of polymers for implantable biomedical devices. International Journal of Molecular Sciences, 10(9), 4033–4065.CrossRefGoogle Scholar
  35. 35.
    Engineer, C., Parikh, J., & Raval, A. (2011). Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends in Biomaterials and Artificial Organs, 25(2).Google Scholar
  36. 36.
    Dorozhkin, S. V. (2009). Calcium orthophosphates in nature, biology and medicine. Materials, 2(2), 399–498.CrossRefGoogle Scholar
  37. 37.
    Dorozhkin, S. V. (2010). Bioceramics of calcium orthophosphates. Biomaterials, 31(7), 1465–1485.CrossRefGoogle Scholar
  38. 38.
    Cotton, N. J., Egan, M. J., & Brunelle, J. E. (2008). Composites of poly(DL-lactide-co-glycolide) and calcium carbonate: In vitro evaluation for use in orthopedic applications. Journal of Biomedical Materials Research Part A, 85(1), 195–205.CrossRefGoogle Scholar
  39. 39.
    Dorozhkin, S. V., & Epple, M. (2002). Biological and medical significance of calcium phosphates. Angewandte Chemie International Edition, 41(17), 3130–3146.CrossRefGoogle Scholar
  40. 40.
    Morse, J. W., Arvidson, R. S., & Lüttge, A. (2007). Calcium carbonate formation and dissolution. Chemical Reviews, 107(2), 342–381.CrossRefGoogle Scholar
  41. 41.
    Bohner, M. (2000). Calcium orthophosphates in medicine: From ceramics to calcium phosphate cements. Injury, 31, D37–D47.CrossRefGoogle Scholar
  42. 42.
    Hayakawa, S. (2015). In vitro degradation behavior of hydroxyapatite. In M. Mucalo (Ed.), Hydroxyapatite (HAp) for biomedical applications, chapter 4 (pp. 85–105). Elsevier.Google Scholar
  43. 43.
    Wu, W., & Nancollas, G. H. (1999). Determination of interfacial tension from crystallization and dissolution data: A comparison with other methods. Advances in Colloid and Interface Science, 79(2–3), 229–279.CrossRefGoogle Scholar
  44. 44.
    Pan, J. (2014). Modelling degradation of bioresorbable polymeric medical devices. Elsevier.Google Scholar
  45. 45.
    Thomann, J., Voegel, J., & Gramain, P. (1993). Quantitative model for the dissolution of calcium hydroxyapatite with a permselective ionic interface. Journal of Colloid and Interface Science, 157(2), 369–374.CrossRefGoogle Scholar
  46. 46.
    Tang, R., Wang, L., & Nancollas, G. H. (2004b). Size-effects in the dissolution of hydroxyapatite: An understanding of biological demineralization. Journal of Materials Chemistry, 14(14), 2341–2346.CrossRefGoogle Scholar
  47. 47.
    Christoffersen, J., Christoffersen, M. R., & Johansen, T. (1996). Some new aspects of surface nucleation applied to the growth and dissolution of fluorapatite and hydroxyapatite. Journal of Crystal Growth, 163(3), 304–310.CrossRefGoogle Scholar
  48. 48.
    Tang, R., Henneman, Z. J., & Nancollas, G. H. (2003). Constant composition kinetics study of carbonated apatite dissolution. Journal of Crystal Growth, 249(3–4), 614–624.CrossRefGoogle Scholar
  49. 49.
    Chin, K. A., & Nancollas, G. H. (1991). Dissolution of fluorapatite. A constant-composition kinetics study. Langmuir, 7(10), 2175–2179.CrossRefGoogle Scholar
  50. 50.
    Dorozhkin, S. V. (2002). A review on the dissolution models of calcium apatites. Progress in Crystal Growth and Characterization of Materials, 44(1), 45–61.CrossRefGoogle Scholar
  51. 51.
    Bohner, M., Lemaître, J., & Ring, T. A. (1997). Kinetics of dissolution of \(\beta \)-tricalcium phosphate. Journal of Colloid and Interface Science, 190(1), 37–48.CrossRefGoogle Scholar
  52. 52.
    Tang, R., Wu, W., Haas, M., & Nancollas, G. H. (2001). Kinetics of dissolution of \(\beta \)-tricalcium phosphate. Langmuir, 17(11), 3480–3485.CrossRefGoogle Scholar
  53. 53.
    Ito, A., Senda, K., Sogo, Y., Oyane, A., Yamazaki, A., & LeGeros, R. Z. (2006). Dissolution rate of zinc-containing \(\beta \)-tricalcium phosphate ceramics. Biomedical Materials, 1(3), 134.CrossRefGoogle Scholar
  54. 54.
    Ginebra, M.-P., Fernández, E., Driessens, F., & Planell, J. A. (1999). Modeling of the hydrolysis of \(\alpha \)-tricalcium phosphate. Journal of the American Ceramic Society, 82(10), 2808–2812.CrossRefGoogle Scholar
  55. 55.
    Durucan, C., & Brown, P. W. (2002). Kinetic model for \(\alpha \)-tricalcium phosphate hydrolysis. Journal of the American Ceramic Society, 85(8), 2013–2018.CrossRefGoogle Scholar
  56. 56.
    Agrawal, C. M., & Athanasiou, K. A. (1997). Technique to control pH in vicinity of biodegrading PLA-PGA implants. Journal of Biomedical Materials Research, 38(2), 105–114.CrossRefGoogle Scholar
  57. 57.
    Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.CrossRefGoogle Scholar
  58. 58.
    Furukawa, T., Matsusue, Y., Yasunaga, T., Shikinami, Y., Okuno, M., & Nakamura, T. (2000). Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide) composite rods for internal fixation of bone fractures. Biomaterials, 21(9), 889–898.CrossRefGoogle Scholar
  59. 59.
    Kobayashi, S., & Yamaji, S. (2014). Analytical prediction of hydrolysis behavior of tricalcium phosphate/poly-L-lactic acid composites in simulated body environment. Advanced Composite Materials, 23(3), 211–223.CrossRefGoogle Scholar
  60. 60.
    Barber, Z. (2005). Chapter 1: General aspects of materials modelling. Introduction to materials modelling. Maney Publishing London.Google Scholar
  61. 61.
    Imai, Y., Nagai, M., & Watanabe, M. (1999b). Degradation of composite materials composed of tricalcium phosphate and a new type of block polyester containing a poly(L-lactic acid) segment. Journal of Biomaterials Science, Polymer Edition, 10(4), 421–432.CrossRefGoogle Scholar
  62. 62.
    Shikinami, Y., & Okuno, M. (1999). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics. Biomaterials, 20(9), 859–877.CrossRefGoogle Scholar
  63. 63.
    Soares, J. S., Moore, J. E, Jr., & Rajagopal, K. R. (2008). Constitutive framework for biodegradable polymers with applications to biodegradable stents. Asaio Journal, 54(3), 295–301.CrossRefGoogle Scholar
  64. 64.
    da Silva Soares, J. F. (2008). Constitutive modeling for biodegradable polymers for application in endovascular stents. Texas A&M University.Google Scholar
  65. 65.
    Bergström, J. S., & Hayman, D. (2015). An overview of mechanical properties and material modeling of polylactide (PLA) for medical applications. Annals of Biomedical Engineering, 44, 330–340.CrossRefGoogle Scholar
  66. 66.
    Göpferich, A. (1996). Mechanisms of polymer degradation and erosion. Biomaterials, 17(2), 103–114.CrossRefGoogle Scholar
  67. 67.
    Lao, L. L., Peppas, N. A., Boey, F. Y. C., & Venkatraman, S. S. (2011). Modeling of drug release from bulk-degrading polymers. International Journal of Pharmaceutics, 418(1), 28–41.CrossRefGoogle Scholar
  68. 68.
    Milan, J.-L., Planell, J. A., & Lacroix, D. (2010). Simulation of bone tissue formation within a porous scaffold under dynamic compression. Biomechanics and Modeling in Mechanobiology, 9(5), 583–596.CrossRefGoogle Scholar
  69. 69.
    Pitt, C. G., & Zhong-Wei, G. (1987). Modification of the rates of chain cleavage of poly(\(\varepsilon \)-caprolactone) and related polyesters in the solid state. Journal of Controlled Release, 4(4), 283–292.CrossRefGoogle Scholar
  70. 70.
    Lyu, S., Schley, J., Loy, B., Lind, D., Hobot, C., Sparer, R., et al. (2007). Kinetics and time-temperature equivalence of polymer degradation. Biomacromolecules, 8(7), 2301–2310.CrossRefGoogle Scholar
  71. 71.
    Batycky, R. P., Hanes, J., Langer, R., & Edwards, D. A. (1997). A theoretical model of erosion and macromolecular drug release from biodegrading microspheres. Journal of Pharmaceutical Sciences, 86(12), 1464–1477.CrossRefGoogle Scholar
  72. 72.
    Antheunis, H., van der Meer, J.-C., de Geus, M., Kingma, W., & Koning, C. E. (2009). Improved mathematical model for the hydrolytic degradation of aliphatic polyesters. Macromolecules, 42(7), 2462–2471.CrossRefGoogle Scholar
  73. 73.
    Antheunis, H., van der Meer, J.-C., de Geus, M., Heise, A., & Koning, C. E. (2010). Autocatalytic equation describing the change in molecular weight during hydrolytic degradation of aliphatic polyesters. Biomacromolecules, 11(4), 1118–1124.CrossRefGoogle Scholar
  74. 74.
    Rothstein, S. N., Federspiel, W. J., & Little, S. R. (2009). A unified mathematical model for the prediction of controlled release from surface and bulk eroding polymer matrices. Biomaterials, 30(8), 1657–1664.CrossRefGoogle Scholar
  75. 75.
    Perale, G., Arosio, P., Moscatelli, D., Barri, V., Müller, M., MacCagnan, S., et al. (2009). A new model of resorbable device degradation and drug release: Transient 1-dimension diffusional model. Journal of Controlled Release, 136(3), 196–205.CrossRefGoogle Scholar
  76. 76.
    Casalini, T., Rossi, F., Lazzari, S., Perale, G., & Masi, M. (2014). Mathematical modeling of PLGA microparticles: From polymer degradation to drug release. Molecular Pharmaceutics, 11(11), 4036–4048.CrossRefGoogle Scholar
  77. 77.
    Busatto, C., Berkenwald, E., Mariano, N., Casis, N., Luna, J., & Estenoz, D. (2016). Homogeneous hydrolytic degradation of poly(lactic-co-glycolic acid) microspheres: Mathematical modeling. Polymer Degradation and Stability, 125, 12–20.CrossRefGoogle Scholar
  78. 78.
    Busatto, C., Pesoa, J., Helbling, I., Luna, J., & Estenoz, D. (2017). Heterogeneous hydrolytic degradation of poly(lactic-co-glycolic acid) microspheres: Mathematical modeling. Journal of Applied Polymer Science, 134(43).Google Scholar
  79. 79.
    Göpferich, A. (1997). Polymer bulk erosion. Macromolecules, 30(9), 2598–2604.CrossRefGoogle Scholar
  80. 80.
    Siepmann, J., Faisant, N., & Benoit, J.-P. (2002). A new mathematical model quantifying drug release from bioerodible microparticles using Monte Carlo simulations. Pharmaceutical Research, 19(12), 1885–1893.CrossRefGoogle Scholar
  81. 81.
    Chen, Y., Zhou, S., & Li, Q. (2011). Mathematical modeling of degradation for bulk-erosive polymers: Applications in tissue engineering scaffolds and drug delivery systems. Acta Biomaterialia, 7(3), 1140–1149.CrossRefGoogle Scholar
  82. 82.
    Hofmann, D., Entrialgo-Castaño, M., Kratz, K., & Lendlein, A. (2009). Knowledge-based approach towards hydrolytic degradation of polymer-based biomaterials. Advanced Materials, 21(32–33), 3237–3245.CrossRefGoogle Scholar
  83. 83.
    Entrialgo-Castaño, M., Salvucci, A. E., Lendlein, A., & Hofmann, D. (2008). An atomistic modeling and quantum mechanical approach to the hydrolytic degradation of aliphatic polyesters. Macromolecular Symposia, 269(1), 47–64.CrossRefGoogle Scholar
  84. 84.
    Wang, Y., Pan, J., Han, X., Sinka, C., & Ding, L. (2008). A phenomenological model for the degradation of biodegradable polymers. Biomaterials, 29(23), 3393–3401.CrossRefGoogle Scholar
  85. 85.
    Wang, Y. (2009). Modelling degradation of bioresorbable polymeric devices. Ph.D. thesis, Department of Engineering, University of Leicester.Google Scholar
  86. 86.
    Han, X., & Pan, J. (2009). A model for simultaneous crystallisation and biodegradation of biodegradable polymers. Biomaterials, 30(3), 423–430.CrossRefGoogle Scholar
  87. 87.
    Han, X. (2011). Degradation models for polyesters and their composites. Ph.D. thesis, Univeristy of Leicester.Google Scholar
  88. 88.
    Han, X., Pan, J., Buchanan, F., Weir, N., & Farrar, D. (2010). Analysis of degradation data of poly(L-lactide-co-L, D-lactide) and poly(L-lactide) obtained at elevated and physiological temperatures using mathematical models. Acta Biomaterialia, 6(10), 3882–3889.CrossRefGoogle Scholar
  89. 89.
    Wang, Y., Han, X., Pan, J., & Sinka, C. (2010a). An entropy spring model for the Youngs modulus change of biodegradable polymers during biodegradation. Journal of the Mechanical Behavior of Biomedical Materials, 3(1), 14–21.CrossRefGoogle Scholar
  90. 90.
    Han, X., & Pan, J. (2011). Polymer chain scission, oligomer production and diffusion: A two-scale model for degradation of bioresorbable polyesters. Acta Biomaterialia, 7(2), 538–547.CrossRefGoogle Scholar
  91. 91.
    Gleadall, A., Pan, J., & Atkinson, H. (2012). A simplified theory of crystallisation induced by polymer chain scissions for biodegradable polyesters. Polymer Degradation and Stability, 97(9), 1616–1620.CrossRefGoogle Scholar
  92. 92.
    Gleadall, A. C. (2015). Modelling degradation of biodegradable polymers and their mechanical properties. Ph.D. thesis, Department of Engineering, University of Leicester.Google Scholar
  93. 93.
    Han, X., & Pan, J. (2013). Finite element analysis of degradation of biodegradable medical devices. OA Biotechnology, 2(3), 22.CrossRefGoogle Scholar
  94. 94.
    Gleadall, A., & Pan, J. (2013). Computer simulation of polymer chain scission in biodegradable polymers. Journal of Biotechnology and Biomaterials.Google Scholar
  95. 95.
    Gleadall, A., Pan, J., Kruft, M.-A., & Kellomäki, M. (2014). Degradation mechanisms of bioresorbable polyesters. Part 2. Effects of initial molecular weight and residual monomer. Acta Biomaterialia, 10(5), 2233–2240.CrossRefGoogle Scholar
  96. 96.
    Gleadall, A., Pan, J., Ding, L., Kruft, M.-A., & Curcó, D. (2015a). An atomic finite element model for biodegradable polymers. Part 1. Formulation of the finite elements. Journal of the Mechanical Behavior of Biomedical Materials, 51, 409–420.CrossRefGoogle Scholar
  97. 97.
    Gleadall, A., Pan, J., & Kruft, M.-A. (2015b). An atomic finite element model for biodegradable polymers. Part 2. A model for change in youngs modulus due to polymer chain scission. Journal of the Mechanical Behavior of Biomedical Materials, 51, 237–247.CrossRefGoogle Scholar
  98. 98.
    Shine, R., Shirazi, R. N., Ronan, W., Sweeney, C. A., Kelly, N., Rochev, Y. A., et al. (2017). Modeling of biodegradable polyesters with applications to coronary stents. Journal of Medical Devices, 11(2), 021007.CrossRefGoogle Scholar
  99. 99.
    Sevim, K., & Pan, J. (2018). A model for hydrolytic degradation and erosion of biodegradable polymers. Acta Biomaterialia, 66, 192–199.CrossRefGoogle Scholar
  100. 100.
    Ebrahimian-Hosseinabadi, M., Ashrafizadeh, F., Etemadifar, M., & Venkatraman, S. S. (2011). Evaluating and modeling the mechanical properties of the prepared PLGA/nano-BCP composite scaffolds for bone tissue engineering. Journal of Materials Science and Technology, 27(12), 1105–1112.CrossRefGoogle Scholar
  101. 101.
    Doyle, H., Lohfeld, S., & McHugh, P. (2014). Predicting the elastic properties of selective laser sintered PCL/\(\beta \)-TCP bone scaffold materials using computational modelling. Annals of Biomedical Engineering, 42(3), 661–677.CrossRefGoogle Scholar
  102. 102.
    Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.CrossRefGoogle Scholar
  103. 103.
    Van der Meer, S., De Wijn, J., & Wolke, J. (1996). The influence of basic filler materials on the degradation of amorphous D-and L-lactide copolymer. Journal of Materials Science: Materials in Medicine, 7(6), 359–361.Google Scholar
  104. 104.
    Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations