• Ismael Moreno-GomezEmail author
Part of the Springer Theses book series (Springer Theses)


With an ageing population [1] and an increasing rate of sports related injuries [2], the need for a steady and reliable source of good quality materials for orthopaedic applications seems paramount. Currently, the three main commercially available types of orthopaedic implants are: non-degradable implants, biodegradable polymeric implants and bioresorbable composites or biocomposites, that is composites made of biodegradable polymers and calcium-based fillers. Figure 1.1 depicts the different types of interference screws for anterior cruciate ligament (ACL) reconstruction manufactured by Stryker [3].


  1. 1.
    Suzman, R., Beard, J. (2011). Global health and aging. Technical Report 11-7737, World Health Organization.Google Scholar
  2. 2.
    Health and Social Care Information Centre (2012). Provisional monthly hospital episode statistics for admitted patient care, outpatients and accident and emergency data - April 2012. Technical report, National Health Service.Google Scholar
  3. 3.
    Stryker (2004). Fixation devices for ACL reconstruction. Commercial brochure. Retrieved September 1, 2016 from
  4. 4.
    Myers, P., Logan, M., Stokes, A., Boyd, K., & Watts, M. (2008). Bioabsorbable versus titanium interference screws with hamstring autograft in anterior cruciate ligament reconstruction: a prospective randomized trial with 2-year follow-up. Arthroscopy: The Journal of Arthroscopic & Related Surgery  24(7), 817–823.Google Scholar
  5. 5.
    Emond, C. E., Woelber, E. B., Kurd, S. K., Ciccotti, M. G., & Cohen, S. B. (2011). A comparison of the results of anterior cruciate ligament reconstruction using bioabsorbable versus metal interference screws: a meta-analysis. JBJS, 93(6), 572–580.CrossRefGoogle Scholar
  6. 6.
    Drogset, J. O., Straume, L. G., Bjørkmo, I., & Myhr, G. (2011). A prospective randomized study of ACL-reconstructions using bone-patellar tendon-bone grafts fixed with bioabsorbable or metal interference screws. Knee Surgery, Sports Traumatology, Arthroscopy, 19(5), 753–759.CrossRefGoogle Scholar
  7. 7.
    Kontakis, G. M., Pagkalos, J. E., Tosounidis, T. I., Melissas, J., & Katonis, P. (2007). Bioabsorbable materials in orthopaedics. Acta Orthopaedica Belgica, 73(2), 159.Google Scholar
  8. 8.
    Ambrose, C. G., & Clanton, T. O. (2004). Bioabsorbable implants: review of clinical experience in orthopedic surgery. Annals of Biomedical Engineering, 32(1), 171–177.CrossRefGoogle Scholar
  9. 9.
    Amini, A. R., Wallace, J. S., & Nukavarapu, S. P. (2011). Short-term and long-term effects of orthopedic biodegradable implants. Journal of Long-term Effects of Medical Implants 21(2).Google Scholar
  10. 10.
    Hench, L. L., & Polak, J. M. (2002). Third-generation biomedical materials. Science, 295(5557), 1014–1017.CrossRefGoogle Scholar
  11. 11.
    Walton, M., & Cotton, N. J. (2007). Long-term in vivo degradation of poly-L-lactide (PLLA) in bone. Journal of Biomaterials Applications, 21(4), 395–411.CrossRefGoogle Scholar
  12. 12.
    Weiler, A., Hoffmann, R. F., Stähelin, A. C., Helling, H.-J., & Südkamp, N. P. (2000). Biodegradable implants in sports medicine: the biological base. Arthroscopy, 16(3), 305–321.CrossRefGoogle Scholar
  13. 13.
    Disegi, J. A., & Wyss, H. (1989). Implant materials for fracture fixation: a clinical perspective. Orthopedics, 12(1), 75–79.Google Scholar
  14. 14.
    Pietrzak, W. S., Verstynen, M. L., & Sarver, D. R. (1997). Bioabsorbable fixation devices: status for the craniomaxillofacial surgeon. The Journal of Craniofacial Surgery, 8(2), 92–96.CrossRefGoogle Scholar
  15. 15.
    Verheyen, C., De Wijn, J., Van Blitterswijk, C., & De Groot, K. (1992). Evaluation of hydroxylapatite/poly(L-lactide) composites: mechanical behavior. Journal of Biomedical Materials Research, 26(10), 1277–1296.Google Scholar
  16. 16.
    Shikinami, Y., & Okuno, M. (1999). Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): part I. Basic characteristics. Biomaterials, 20(9), 859–877.Google Scholar
  17. 17.
    Tsunoda, M. (2003). Degradation of poly(DL-lactic acid-co-glycolic acid) containing calcium carbonate and hydroxyapatite fillers-effect of size and shape of the fillers. Dental Materials Journal, 22(3), 371–382.CrossRefGoogle Scholar
  18. 18.
    Deng, X., Sui, G., Zhao, M., Chen, G., & Yang, X. (2007). Poly(L-lactic acid)/hydroxyapatite hybrid nanofibrous scaffolds prepared by electrospinning. Journal of Biomaterials Science, Polymer Edition, 18(1), 117–130.Google Scholar
  19. 19.
    Yang, Z., Best, S. M., & Cameron, R. E. (2009). The influence of \(\alpha \)-tricalcium phosphate nanoparticles and microparticles on the degradation of poly(D, L-lactide-co-glycolide). Advanced Materials, 21(38–39), 3900–3904.Google Scholar
  20. 20.
    Ara, M., Watanabe, M., & Imai, Y. (2002). Effect of blending calcium compounds on hydrolytic degradation of poly(DL-lactic acid-co-glycolic acid). Biomaterials, 23(12), 2479–2483.Google Scholar
  21. 21.
    Kikuchi, M., Koyama, Y., Yamada, T., Imamura, Y., Okada, T., Shirahama, N., et al. (2004). Development of guided bone regeneration membrane composed of \(\beta \)-tricalcium phosphate and poly(L-lactide-co-glycolide-co-\(\varepsilon \)-caprolactone) composites. Biomaterials, 25(28), 5979–5986.CrossRefGoogle Scholar
  22. 22.
    Pan, J., Han, X., Niu, W., & Cameron, R. E. (2011). A model for biodegradation of composite materials made of polyesters and tricalcium phosphates. Biomaterials, 32(9), 2248–2255.Google Scholar
  23. 23.
    Pan, J. (2014). Modelling degradation of bioresorbable polymeric medical devices. Elsevier.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK

Personalised recommendations