Skip to main content

Photocatalysts for Artificial Photosynthesis

Part of the Environmental Chemistry for a Sustainable World book series (ECSW,volume 31)

Abstract

By the help of the novel nanocomposites and nanoparticles, photocatalysis for artificial photosynthesis is an important area of application due to the problems related to global warming and the renewed interest in the development of non-fossil fuel sources of energy. Thus, there has been a resurgence of research into the electrochemical and photochemical reaction and conversion into energy-rich products. Addressed herein, the importance of photocatalysts and their applications for artificial photosynthesis in our daily life has been stressed out for human beings. Further, the properties of photocatalysts as a result of nanoscale are also discussed here. Besides, the primary photosynthetic systems applications of photocatalysts, supramolecular artificial photosynthetic systems, covalently linked molecular systems; general photosynthesis mechanism are also pointed out here in detail.

Keywords

  • Artificial photosynthesis
  • Porphyrin
  • Subphthalocyanines
  • BODIPY
  • Porphyrins/naphthalocyanines

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-04949-2_5
  • Chapter length: 21 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   119.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-04949-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   159.99
Price excludes VAT (USA)
Fig. 5.1
Fig. 5.2
Fig. 5.3
Fig. 5.4
Fig. 5.5
Fig. 5.6

References

  • Abrahamson JT, Sen F, Sempere B et al (2013) Excess thermopower and the theory of thermopower waves. ACS Nano 7(8):6533–6544

    CAS  CrossRef  Google Scholar 

  • Aday B, Yildiz Y, Ulus R et al (2016) One-pot, efficient and green synthesis of acridinedione derivatives using highly monodisperse platinum nanoparticles supported with reduced graphene oxide. New J Chem 40:748–754

    CAS  CrossRef  Google Scholar 

  • Akocak S, Sen B, Lolak N et al (2017) One-pot three-component synthesis of 2-amino-4H-chromene derivatives by using monodisperse Pd nanomaterials anchored graphene oxide as a highly efficient and recyclable catalyst. Nanostruct Nano-objects 11:25–31

    CAS  CrossRef  Google Scholar 

  • Alstrum-Acevedo JH, Brennaman MK, Meyer TJ (2005) Chemical approaches to artificial photosynthesis. 2. Inorg Chem 44:6802–6827

    CAS  CrossRef  Google Scholar 

  • Aminur Rahman GM, Lüders D, Rodríguez-Morgade MS et al (2009) Physicochemical characterization of subporphyrazines-lower subphthalocyanine homologues. Chem Sus Chem 2:330–335

    CrossRef  CAS  Google Scholar 

  • Ayranci R, Baskaya G, Guzel M et al (2017a) Enhanced optical and electrical properties of PEDOT via nanostructured carbon materials: a comparative investigation. Nanostruct Nano-objects 11:13–19

    CAS  CrossRef  Google Scholar 

  • Ayranci R, Baskaya G, Guzel M et al (2017b) Carbon-based nanomaterials for high-performance optoelectrochemical systems. Chem Sel 2(4):1548–1555

    CAS  Google Scholar 

  • Balzani V, Moggi L, Scandola F (1987) Towards supramolecular photochemistry: assembly of molecular components to obtain photochemical molecular devices. Supramol Photochem 214:1–28

    CAS  Google Scholar 

  • Balzani V, Credi A, Venturi M (2003) Photoinduced charge separation and solar energy conversion. In: Balzani V, Credi A, Venturi M (eds) Molecular devices and machines: a journey into the Nanoworld. Wiley-VCH, Weinheim, pp 132–173

    CrossRef  Google Scholar 

  • Baskaya G, Esirden I, Erken E et al (2017a) Synthesis of 5-substituted-1H-tetrazole derivatives using monodisperse carbon black decorated Pt nanoparticles as heterogeneous nanocatalysts. J Nanosci Nanotechnol 17:1992–1999

    CAS  CrossRef  Google Scholar 

  • Baskaya G, Yıldız Y, Savk A et al (2017b) Rapid, sensitive, and reusable detection of glucose by highly monodisperse nickel nanoparticles decorated functionalized multi-walled carbon nanotubes. Biosens Bioelectron 91:728–733

    CAS  CrossRef  Google Scholar 

  • Blankenship RE, Madigan MT, Bauer CE (eds) (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishing, Dordrecht, p 1343

    Google Scholar 

  • Bozkurt S, Tosun B, Sen B et al (2017) A hydrogen peroxide sensor based on TNM functionalized reduced graphene oxide grafted with highly monodisperse Pd nanoparticles. Anal Chim Acta 989:88–94

    CAS  CrossRef  Google Scholar 

  • Britt RD (1996) Oxygen evolution. In: Yocum CY, Ort D (eds) Advances in photosynthesis: oxygenic photosynthesis, the light reactions. Kluwer Academic Publishers, Amsterdam, pp 137–164

    Google Scholar 

  • Brothers PJ (2008) Boron complexes of porphyrins and related polypyrrole ligands: fantastic chemistry for both boron and the porphyrin. Chem Commun 18:2090–2102

    Google Scholar 

  • Cabrera-Espinoza A, Insuasty B, Ortiz A (2018) Novel BODIPY-C60 derivatives with tuned photophysical and electron acceptor properties: isoxazolino[60]fullerene and pyrrolidino[60]fullerene. J Lumin 194:729–738

    CAS  CrossRef  Google Scholar 

  • Celik B, Baskaya G, Karatepe O et al (2016a) Monodisperse Pt(0)/DPA@GO nanoparticles as highly active catalysts for alcohol oxidation and dehydrogenation of DMAB. Int J Hydrog Energy 41:5661–5669

    CAS  CrossRef  Google Scholar 

  • Celik B, Erken E, Eris S et al (2016b) Highly monodisperse Pt(0)@AC NPs as highly efficient and reusable catalysts: the effect of the surfactant on their catalytic activities in room temperature dehydrocoupling of DMAB. Catal Sci Technol 6:1685–1692

    CAS  CrossRef  Google Scholar 

  • Celik B, Kuzu S, Erken E et al (2016c) Nearly monodisperse carbon nanotube furnished nanocatalysts as highly efficient and reusable catalyst for dehydrocoupling of DMAB and C1 to C3 alcohol oxidation. Int J Hydrog Energy 41:3093–3101

    CAS  CrossRef  Google Scholar 

  • Celik B, Yildiz Y, Erken E et al (2016d) Monodisperse palladium-cobalt alloy nanoparticles assembled on poly (N-vinyl-pyrrolidone) (PVP) as highly effective catalyst for the dimethylamine borane (DMAB) dehydrocoupling. RSC Adv 6:24097–24102

    CAS  CrossRef  Google Scholar 

  • Chen T, Dai L (2013) Carbon nanomaterials for high-performance supercapacitors. Mater Today 16(7–8):272–280

    CAS  CrossRef  Google Scholar 

  • Chitta R (2002) Master thesis, University of Hyderabed

    Google Scholar 

  • Claessens CG, Gonzalez-Rodríguez D, Torres T (2002) Subphthalocyanines: singular nonplanar aromatic compounds synthesis, reactivity, and physical properties. Chem Rev 102:835–854

    CAS  CrossRef  Google Scholar 

  • Collings AF, Critchley C (eds) (2005) Artificial photosynthesis: from basic biology to industrial application. Wiley-VCH Verlag, Weinheim, p 339

    Google Scholar 

  • D’Souza F, Ito O (2012) Photosensitized electron transfer processes of nanocarbons applicable to solar cells. Chem Soc Rev 41:86–96

    CrossRef  Google Scholar 

  • D’Souza F, Smith PM, Zandler ME et al (2004) Energy transfer followed by electron transfer in a supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene: a model for the photosynthetic antenna-reaction center complex. J Am Chem Soc 126:7898–7907

    CrossRef  CAS  Google Scholar 

  • D’Souza F, Chitta R, Sandanayaka ASD et al (2007) Self-assembled single-walled carbon nanotube: zinc–porphyrin hybrids through ammonium ion–crown ether interaction: construction and electron transfer. Chem Eur J 13:8277–8284

    CrossRef  CAS  Google Scholar 

  • D’Souza F, Wijesinghe CA, El-Khouly ME et al (2011) Ultrafast excitation transfer, and charge stabilization in a newly assembled photosynthetic antenna-reaction center mimic composed of boron dipyrrin, zinc porphyrin and fullerene. Phys Chem Chem Phys 13:18168–18178

    CrossRef  CAS  Google Scholar 

  • Danks SM, Evans EH, Whittaker PA (1985) Photosynthetic systems: structure, function, and assembly. Wiley, New York

    Google Scholar 

  • Dasdelen Z, Yıldız Y, Eris S et al (2017) Enhanced electrocatalytic activity and durability of Pt nanoparticles decorated on GO-PVP hybrid material for methanol oxidation reaction. Appl Catal B Environ 219C:511–516

    CrossRef  CAS  Google Scholar 

  • Datta K, Banerjee M, Mukherjee AK (2004) Comparative study of the host−guest complexes of [60]- and [70]-fullerenes with N,N′-Dibenzyl-1,4,10,13-tetraoxane-7,16-diaza-cyclooctadecane in different solvents. J Phys Chem B 108:16100–16106

    CAS  CrossRef  Google Scholar 

  • Deetz MJ, Shang M, Smith BD (2000) A macrobicyclic receptor with versatile recognition properties: simultaneous binding of an ion pair and selective complexation of dimethylsulfoxide. J Am Chem Soc 122:6201–6207

    CAS  CrossRef  Google Scholar 

  • Deisenhofer J, Norris JR (eds) (1993) The photosynthetic reaction center, 1st edn. Academic, San Diego, p 432

    Google Scholar 

  • del Rey B, Torres T (1997) Synthesis of highly conjugated boron (III) subphthalocyanines. Tetrahedron Lett 38:5351–5354

    CrossRef  Google Scholar 

  • del Rey B, Keller B, Torres T et al (1998) Synthesis and nonlinear optical, photophysical, and electrochemical properties of subphthalocyanines. J Am Chem Soc 120:12808–12817

    CrossRef  Google Scholar 

  • Demir E, Savk A, Sen B et al (2017a) A novel monodisperse metal nanoparticles anchored graphene oxide as a Counter Electrode for Dye-Sensitized Solar Cells. Nanostruct Nano-objects 12:41–45

    CAS  CrossRef  Google Scholar 

  • Demir E, Sen B, Sen F (2017b) Highly efficient nanoparticles and f-MWCNT nanocomposites based counter electrodes for dye-sensitized solar cells. Nanostruct Nano-objects 11:39–45

    CAS  CrossRef  Google Scholar 

  • Demirci T, Celik B, Yıldız Y et al (2016) One-pot synthesis of Hantzsch dihydropyridines using highly efficient and stable PdRuNi@GO catalyst. RSC Adv 6:76948–76956

    CAS  CrossRef  Google Scholar 

  • Ding Y, Zhu WH, Xie Y (2016) Development of ion chemosensors based on porphyrin analogues. Chem Rev 117:2203–2256

    CrossRef  CAS  Google Scholar 

  • El-Khouly ME (2010) Electron transfer reaction of light harvesting zinc naphthalocyanine–subphthalocyanine self-assembled dyad: spectroscopic, electrochemical, computational, and photochemical studies. Phys Chem Chem Phys 12:12746–12752

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Ito O, Smith PM et al (2004) Intermolecular and supramolecular photoinduced electron transfer processes of fullerene–porphyrin/phthalocyanine systems. J Photochem Photobiol C 5:79–104

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Araki Y, Ito O et al (2006) Subphthalocyanines as light-harvesting electron donor and electron acceptor in artificial photosynthetic systems. J Porphyrins Phthalocyanines 10:1156–1164

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Shim SH, Araki Y et al (2008) Effect of dual fullerenes on lifetimes of charge-separated states of subphthalocyanine-triphenylamine-fullerene molecular systems. J Phys Chem B 112:3910–3917

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Ryu JB, Kay K-Y et al (2009) Long-lived charge separation in a dyad of closely-linked subphthalocyanine-zinc porphyrin bearing multiple triphenylamines. J Phys Chem C 113:15444–15453

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Ju DK, Kay KY et al (2010) Supramolecular tetrad of subphthalocyanine–triphenylamine–zinc porphyrin coordinated to fullerene as an “Antenna-Reaction-Center” mimic: formation of a long-lived charge-separated state in nonpolar solvent. S Chem Eur J 16:6193–6202

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Gutierrez AM, Sastre-Santos A et al (2012a) Light harvesting zinc naphthalocyanine–perylenediimide supramolecular dyads: long-lived charge-separated states in nonpolar media. Phys Chem Chem Phys 14:3612–3621

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Kim JH, Kay KY et al (2012b) Subphthalocyanines as light-harvesting electron donor and electron acceptor in artificial photosynthetic systems. J Phys Chem C 116:19709–19717

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Moiseev AG, van der Est A et al (2012c) Photoinduced electron transfer in zinc naphthalocyanine-naphthalenediimide supramolecular dyads. ChemPhysChem 13:1191–1198

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, Fukuzumi S, D’souza F (2014) Photosynthetic antenna-reaction center mimicry by using boron dipyrromethene sensitizers. ChemPhysChem 15:30–47

    CAS  CrossRef  Google Scholar 

  • El-Khouly ME, El-Mohsnawy E, Fukuzimi S (2017) Solar energy conversion: from natural to artificial photosynthesis. J Photochem Photobiol C Photochem Rev 31:36–83

    CAS  CrossRef  Google Scholar 

  • Eris S, Dasdelen Z, Sen F et al (2018a) Investigation of electrocatalytic activity and stability of Pt@f-VC catalyst prepared by in-situ synthesis for methanol electrooxidation. Int J Hydrog Energy 43(1):385–390

    CAS  CrossRef  Google Scholar 

  • Eris S, Dasdelen Z, Sen F (2018b) Enhanced electrocatalytic activity and stability of monodisperse Pt nanocomposites for direct methanol fuel cells. J Colloid Interface Sci 513:767–773

    CAS  CrossRef  Google Scholar 

  • Eris S, Dasdelen Z, Yildiz Y et al (2018c) Nanostructured Polyaniline-rGO decorated platinum catalyst with enhanced activity and durability for Methanol oxidation. Int J Hydrog Energy 43(3):1337–1343

    CAS  CrossRef  Google Scholar 

  • Erken E, Esirden I, Kaya M et al (2015) A rapid and novel method for the synthesis of 5-substituted 1H-tetrazole catalyzed by exceptional reusable monodisperse Pt NPs@AC under the microwave irradiation. RSC Adv 5:68558–68564

    CAS  CrossRef  Google Scholar 

  • Erken E, Pamuk H, Karatepe O et al (2016a) New Pt(0) nanoparticles as highly active and reusable catalysts in the C1–C3 alcohol oxidation and the room temperature dehydrocoupling of dimethylamine-borane (DMAB). J Clust Sci 27:29

    CrossRef  CAS  Google Scholar 

  • Erken E, Yildiz Y, Kilbas B et al (2016b) Synthesis and characterization of nearly monodisperse Pt nanoparticles for C1 to C3 alcohol oxidation and dehydrogenation of dimethylamine-borane (DMAB). J Nanosci Nanotechnol 16:5944–5950

    CAS  CrossRef  Google Scholar 

  • Esirden I, Erken E, Kaya M et al (2015) Monodisperse Pt NPs@rGO as highly efficient and reusable heterogeneous catalysts for the synthesis of 5-substituted 1H-tetrazole derivatives. Catal Sci Technol 5:4452–4457

    CAS  CrossRef  Google Scholar 

  • Fukuzumi S, Imahori H, Yamada H et al (2001) Catalytic effects of dioxygen on intramolecular electron transfer in radical ion pairs of zinc porphyrin-linked fullerenes. J Am Chem Soc 123:2571–2575

    CAS  CrossRef  Google Scholar 

  • Geyer M, Plenzig F, Rauschnabel J et al (1996) Subphthalocyanines: preparation, reactivity and physical properties. Synthesis 9:1139–1151

    CrossRef  Google Scholar 

  • Giraldo JP, Landry MP, Faltermeier SM et al (2014) A nanobionic approach to augment plant photosynthesis and biochemical sensing using targeted nanoparticles. Nat Mater 13:400–408

    CAS  CrossRef  Google Scholar 

  • Goksu H, Celik B, Yildiz Y et al (2016a) Superior monodisperse CNT-supported CoPd (CoPd@CNT) nanoparticles for selective reduction of nitro compounds to primary amines with NaBH4 in an aqueous medium. Chem Sel 1(10):2366–2372

    Google Scholar 

  • Goksu H, Yildiz Y, Celik B et al (2016b) Highly efficient and monodisperse graphene oxide furnished Ru/Pd nanoparticles for the dehalogenation of aryl halides via ammonia borane. Chem Sel 1(5):953–958

    Google Scholar 

  • Goksu H, Yildiz Y, Celik B et al (2016c) Eco-friendly hydrogenation of aromatic aldehyde compounds by tandem dehydrogenation of dimethylamine-borane in the presence of reduced graphene oxide furnished platinum nanocatalyst. Catal Sci Technol 6:2318–2324

    CAS  CrossRef  Google Scholar 

  • Gonzalez Rodríguez D, Bottari GJ (2009) Phthalocyanines, subphthalocyanines and porphyrins for energy and electron transfer applications. Porphyrins Phthalocyanines 13:624–636

    CrossRef  Google Scholar 

  • Gonzalez-Rodríguez D, Torres T, Guldi DM et al (2002) Energy transfer processes in novel subphthalocyanine-fullerene ensembles. Org Lett 4:335–338

    CrossRef  CAS  Google Scholar 

  • Gonzalez-Rodríguez D, Torres T, Olmstead MM et al (2006) Photoinduced charge-transfer states in subphthalocyanine-ferrocene dyads. J Am Chem Soc 128:10680–10681

    CrossRef  CAS  Google Scholar 

  • Gonzalez-Rodríguez D, Carbonell E, Guldi DM et al (2009) Modulating electronic interactions between closely spaced complementary π surfaces with different outcomes: regio- and diastereomerically pure subphthalocyanine–C60 tris adducts. Angew Chem Int Ed 48:8032–8036

    CrossRef  CAS  Google Scholar 

  • Guldi DM (2000) Fullerenes: three-dimensional electron acceptor materials. Chem Commun 5:321–327

    Google Scholar 

  • Gust D, Moore TA (1999) Intramolecular photoinduced electron-transfer reactions of porphyrins. In: Gust D, Moore TA (eds) The porphyrin handbook. Academic, New York, pp 153–190

    Google Scholar 

  • Gust D, Moore TA, Moore AL (1993) Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res 26:198–205

    CAS  CrossRef  Google Scholar 

  • Gust D, Moore TA, Moore AL (2001) Mimicking photosynthetic solar energy transduction. Acc Chem Res 34(1):40–48

    CAS  CrossRef  Google Scholar 

  • Hasobe T, Kamat PV, Absalom MA et al (2004) Supramolecular photovoltaic cells based on composite molecular nanoclusters: dendritic porphyrin and C60, porphyrin dimer and C60, and porphyrin-C60 dyad. J Phys Chem B 108:12865–12872

    CAS  CrossRef  Google Scholar 

  • Hasobe T, Kamat PV, Troiani V et al (2005) Enhancement of light-energy conversion efficiency by multi-porphyrin arrays of porphyrin-peptide oligomers with fullerene clusters. J Phys Chem B 109:19–23

    CAS  CrossRef  Google Scholar 

  • Hasobe T, Saito K, Kamat PV et al (2007) Organic solar cells. Supramolecular composites of porphyrins and fullerenes organized by polypeptide structures as light harvesters. J Mater Chem 17:4160–4170

    CAS  CrossRef  Google Scholar 

  • Hosomizu K, Imahori H, Hahn U et al (2007) Dendritic effects on structure and photophysical and photoelectrochemical properties of fullerene dendrimers and their nanoclusters. J Phys Chem C 111:2777–2786

    CAS  CrossRef  Google Scholar 

  • Imahori H, Mori Y, Matano J (2003) Nanostructured artificial photosynthesis. J Photochem Photobiol C 4:51–83

    CAS  CrossRef  Google Scholar 

  • Imahori H, Fujimoto A, Kang S et al (2005a) Host-guest interactions in the supramolecular incorporation of fullerenes into tailored holes on porphyrin-modified gold nanoparticles in molecular photovoltaics. Chem Eur J 11:7265

    CAS  CrossRef  Google Scholar 

  • Imahori H, Fujimoto A, Kang S et al (2005b) Supramolecular incorporation of C60 molecules into tailored holes on porphyrin-modified gold nanoclusters. Adv Mater 17:1727–1730

    CAS  CrossRef  Google Scholar 

  • Imahori H, Mitamura K, Shibano Y et al (2006a) A photoelectrochemical device with a nanostructured SnO2 electrode modified with composite clusters of porphyrin-modified silica nanoparticle and fullerene. J Phys Chem B 110:11399–11405

    CAS  CrossRef  Google Scholar 

  • Imahori H, Mitamura K, Umeyama T et al (2006b) Chem Commun 28:406–408

    CrossRef  Google Scholar 

  • Ishii K (2012) Functional singlet oxygen generators based on phthalocyanines. Coord Chem Rev 256:1556–1568

    CAS  CrossRef  Google Scholar 

  • Izzat RM, Bradshaw JS, Nielson SA et al (1985) Thermodynamic and kinetic data for cation-macrocycle interaction. Chem Rev 85:271–339

    CrossRef  Google Scholar 

  • Karatepe O, Yildiz Y, Pamuk H et al (2016) Enhanced electrocatalytic activity and durability of highly monodisperse Pt@PPy-PANI nanocomposites as a novel catalyst for electro-oxidation of methanol. RSC Adv 6:50851–50857

    CAS  CrossRef  Google Scholar 

  • KC CB, D’Souza F (2016) Design and photochemical study of supramolecular donor-acceptor systems assembled via metal-ligand axial coordination. Coord Chem Rev 322:104–141

    CAS  CrossRef  Google Scholar 

  • Kietaibl H (1974) The crystal and molecular structure of a new phthalocyanine-like boron complex. Monatsh Chem 105:405–418

    CAS  CrossRef  Google Scholar 

  • Kim D (2012) Multiporphyrin arrays: fundamentals and applications. CRC Press, Boca Raton, p 828

    CrossRef  Google Scholar 

  • Kim JH, El-Khouly ME, Araki Y et al (2008) Photoinduced processes of subphthalocyanine–diazobenzene–fullerene triad as an efficient excited energy transfer system. Chem Lett 37:544–−545

    CAS  CrossRef  Google Scholar 

  • Kim BS, Ma B, Donuru VR et al (2010) Bodipy-backboned polymers as an electron donor in bulk heterojunction solar cells. Chem Commun 46:4148–4150

    CAS  CrossRef  Google Scholar 

  • Kobayashi N (2002) Coord Chem Rev 227:129–252

    CAS  CrossRef  Google Scholar 

  • Kuninobu K, Tsutomu I, Makoto H et al (1996) Structure and some properties of (alkoxo)(subphthalocyaninato)boron(III). Bull Chem Soc Jpn 69:2559–2563

    CrossRef  Google Scholar 

  • Ladomenou K, Nikolaou V, Charalambidis G et al (2017) Porphyrin-BODIPY-based hybrid model compounds for artificial photosynthetic reaction centers. C R Chim 20:314–322

    CAS  CrossRef  Google Scholar 

  • Lehn JM (1990) Perspectives in supramolecular chemistry-from molecular recognition towards molecular information processing and self-organization. Angew Chem Int Ed 29:1304–1319

    CrossRef  Google Scholar 

  • Lehn JM (1993) Supramolecular chemistry. Science 260:1762–1763

    CAS  CrossRef  Google Scholar 

  • Liao J, Wang Y, Xu Y et al (2015) Synthesis, optical and electrochemical properties of novel meso-triphenylamine BODIPY dyes with aromatic moieties at 3,5-positions. Tetrahedron 71:5078–5084

    CAS  CrossRef  Google Scholar 

  • Liao J, Zhao H, Xu Y et al (2016) Novel D-A-D type dyes based on BODIPY platform for solution-processed organic solar cells. Dyes Pigments 128:131–140

    CAS  CrossRef  Google Scholar 

  • Liddell PA, Sumida JP, Macpherson AN et al (1994) Preparation and photophysical studies of porphyrin-C60 dyads. Photochem Photobiol 60:537–541

    CAS  CrossRef  Google Scholar 

  • Luhman WA, Holmes RJ (2011) Investigation of energy transfer in organic photovoltaic cells and impact on exciton diffusion length measurements. Adv Funct Mater 21:764–771

    CAS  CrossRef  Google Scholar 

  • Macor L, Fungo F, Tempesti T et al (2009) Near-IR sensitization of wide band gap oxide semiconductor by axially anchored Si-naphthalocyanines. Energy Environ Sci 2:529–534

    CAS  CrossRef  Google Scholar 

  • Maligaspe E, Tkachenko NV, Subbaiyan NK et al (2009) Photosynthetic antenna−reaction center mimicry: sequential energy- and electron transfer in a self-assembled supramolecular triad composed of boron dipyrrin, zinc porphyrin, and fullerene. J Phys Chem A 113:8478–8489

    CAS  CrossRef  Google Scholar 

  • Maligaspe E, Kumpulainen T, Subbaiyan NK et al (2010) Electronic energy harvesting multi BODIPY-zinc porphyrin dyads accommodating fullerene as a photosynthetic composite of antenna-reaction center. Phys Chem Chem Phys 12:7434–7444

    CAS  CrossRef  Google Scholar 

  • Mao M, Zhang X, Cao L et al (2015) Design of Bodipy based organic dyes for high-efficient dye-sensitized solar cells employing double electron acceptors. Dyes Pigments 117:28–36

    CAS  CrossRef  Google Scholar 

  • Martin JN (2000) System engineering guidebook. CRC Press, Boca Raton, p 13

    Google Scholar 

  • Mazik M, Kuschel M, Sicking W (2006) Crown ethers as building blocks for carbohydrate receptors. Org Lett 8:855–858

    CAS  CrossRef  Google Scholar 

  • Nierengarten JF (2014) Fullerenes and other carbon-rich nanostructures. Springer, Berlin. https://doi.org/10.1007/978-3-642-54854-3

    CrossRef  Google Scholar 

  • Ohkubo K, Fukuzumi S (2009) Rational design and functions of electron donor-acceptor dyads with much longer charge-separated lifetimes than natural photosynthetic reaction centers. Bull Chem Soc Jpn 82:303–315

    CAS  CrossRef  Google Scholar 

  • Pan B, Zhu Y-Z, Ye D et al (2018) Improved conversion efficiency in dye-sensitized solar cells based on porphyrin dyes with dithieno[3,2-b:2,3-d]pyrrole donor. Dyes Pigments 150:223–230

    CAS  CrossRef  Google Scholar 

  • Panda MK, Labomenou K, Coutsolelos AG (2012) Porphyrins in bio-inspired transformations: light-harvesting to the solar cell. Coord Chem Rev 256:2601–2627

    CAS  CrossRef  Google Scholar 

  • Pederson CJ (1967) Cyclic polyethers and their complexes with metal salts. J Am Chem Soc 89:7017–7036

    CrossRef  Google Scholar 

  • Poddutoori PK, Zarrabi N, Moiseev AG, Gumbau-Birsa R, Vassiliev S, Est AVD (2013) Chem Eur J 19:3148–3157

    CAS  CrossRef  Google Scholar 

  • Rauschnabel J, Hanack M (1995) New derivatives and homologs of subphthalocyanine. Tetrahedron Lett 36:1629–1632

    CAS  CrossRef  Google Scholar 

  • Romero Nieto C, Medina A, Molina-Ontoria A et al (2012) Towards enhancing light harvesting-subphthalocyanines as electron acceptors. Chem Commun 48:4953–4955

    CAS  CrossRef  Google Scholar 

  • Romero-Nieto C, Guilleme J, Villegas C et al (2011) Subphthalocyanine-polymethine cyanine conjugate: an all organic panchromatic light harvester that reveals charge transfer. J Mater Chem 21:15914–15918

    CrossRef  CAS  Google Scholar 

  • Sagawa T, Yoshikawa S, Imahori H (2010) One-dimensional nanostructured semiconducting materials for organic photovoltaics. J Phys Chem Lett 1:1020–1025

    CAS  CrossRef  Google Scholar 

  • Sahin B, Demir E, Aygun A et al (2017) Investigation of the effect of pomegranate extract and monodisperse silver nanoparticle combination on MCF-7 cell line. J Biotechnol 260C:79–83

    CrossRef  CAS  Google Scholar 

  • Sahin B, Aygun A, Gunduz H et al (2018) Cytotoxic effects of platinum nanoparticles obtained from pomegranate extract by the green synthesis method on the MCF-7 cell line. Colloids Surf B Biointerfaces 163:119–124

    CAS  CrossRef  Google Scholar 

  • Sastre A, Torres T, Diaz-Garcia MA et al (1996) Subphthalocyanines: novel targets for remarkable second-order optical nonlinearities. J J Am Chem Soc 118:2746–2747

    CAS  CrossRef  Google Scholar 

  • Sen F, Boghossian AA, Sen S et al (2013a) Application of nanoparticle antioxidants to enable hyperstable chloroplasts for solar energy harvesting. Adv Energy Mater 3(7):881–893

    CrossRef  CAS  Google Scholar 

  • Sen S, Sen F, Boghossian AA et al (2013b) The effect of reductive dithiothreitol and trolox on nitric oxide quenching of single-walled carbon nanotubes. J Phys Chem C 117(1):593–602

    CAS  CrossRef  Google Scholar 

  • Sen F, Karatas Y, Gülcan M et al (2014a) Amylamine stabilized platinum (0) nanoparticles: active and reusable nanocatalyst in the room temperature dehydrogenation of dimethylamine- borane. RSC Adv 4(4):1526–1531

    CAS  CrossRef  Google Scholar 

  • Sen F, Ulissi ZW, Gong X et al (2014b) Spatiotemporal intracellular nitric oxide signaling captured using internalized, near-infrared fluorescent carbon nanotube nanosensors. Nano Lett 14(8):4887–4894

    CrossRef  CAS  Google Scholar 

  • Sen B, Kuzu S, Demir E et al (2017a) Hydrogen liberation from the dehydrocoupling of dimethylamine-borane at room temperature by using novel and highly monodispersed RuPtNi nanocatalysts decorated with graphene oxide. Int J Hydrog Energy 42(36):23299–23306

    CAS  CrossRef  Google Scholar 

  • Sen B, Kuzu S, Demir E et al (2017b) Polymer-graphene hybrid decorated Pt nanoparticles as highly efficient and reusable catalyst for the dehydrogenation of dimethylamine-borane at room temperature. Int J Hydrog Energy 42(36):23284–23291

    CAS  CrossRef  Google Scholar 

  • Sen B, Akdere EH, Savk A et al (2018) A novel thiocarbamide functionalized graphene oxide supported bimetallic monodisperse Rh-Pt nanoparticles (RhPt/TC@GO NPs) for Knoevenagel condensation of aryl aldehydes together with malononitrile. Appl Catal B Environ 225(5):148–153

    CAS  CrossRef  Google Scholar 

  • Shah SM, Kira A, Imahori H et al (2012) Co-grafting of porphyrins and fullerenes on ZnO nanorods: towards supramolecular donor-acceptor assembly. J Colloid Interface Sci 386:268–276

    CAS  CrossRef  Google Scholar 

  • Shimizu S, Nakano S, Hosoya T et al (2011) Pyrene-fused subphthalocyanine. Chem Commun 47:316–318

    CAS  CrossRef  Google Scholar 

  • Solntsev PV, Spurgin KL, Sabin JR et al (2012) Photoinduced charge transfer in short-distance ferrocenylsubphthalocyanine dyads. Inorg Chem 51:6537–6547

    CAS  CrossRef  Google Scholar 

  • Takeda A, Oku T, Suzuki A et al (2013) Fabrication and characterization of fullerene-based solar cells containing phthalocyanine and naphthalocyanine dimers. Synth Met 177:48–51

    CAS  CrossRef  Google Scholar 

  • Torres T (2006) From subphthalocyanines to subporphyrins. Angew Chem Int Ed. 2006 45:2834–2837

    CAS  CrossRef  Google Scholar 

  • Tsuda A, Osuka A (2001) Fully conjugated porphyrin tapes with electronic absorption bands that reach into the infrared. Science 293:79–82

    CAS  CrossRef  Google Scholar 

  • Urban M, Grätzel M, Nazeeruddin MK et al (2014) Meso-substituted porphyrins for dye-sensitized solar cells. Chem Rev 114:12330–12396

    CrossRef  CAS  Google Scholar 

  • Verrett B, Rand BP, Cheyns D et al (2011) A 4% efficient organic solar cell using a fluorinated fused subphthalocyanine dimer as an electron acceptor. Adv Energy Mater 1:565–568

    CrossRef  CAS  Google Scholar 

  • Wheeler RA (2004) Molecular bioenergetics: simulations of electron, proton, and energy transfer. American Chemical Society, Washington, DC. 2004

    CrossRef  Google Scholar 

  • Yildiz Y, Erken E, Pamuk H et al (2016a) Monodisperse Pt nanoparticles assembled on reduced graphene oxide: highly efficient and reusable catalyst for methanol oxidation and dehydrocoupling of dimethylamine-borane (DMAB). J Nanosci Nanotechnol 16:5951–5958

    CAS  CrossRef  Google Scholar 

  • Yildiz Y, Esirden I, Erken E et al (2016b) Microwave (Mw)-assisted synthesis of 5-substituted 1H-tetrazoles via [3+2] cycloaddition catalyzed by Mw-Pd/Co nanoparticles decorated on multi-walled carbon nanotubes. Chem Sel 1(8):1695–1701

    CAS  Google Scholar 

  • Yildiz Y, Okyay TO, Gezer B et al (2016c) Monodisperse Mw-Pt NPs@VC as highly efficient and reusable adsorbents for methylene blue removal. J Clust Sci 27:1953–1962

    CrossRef  CAS  Google Scholar 

  • Yildiz Y, Pamuk H, Karatepe O et al (2016d) Carbon black hybrid material furnished monodisperse platinum nanoparticles as highly efficient and reusable electrocatalysts for formic acid electro-oxidation. RSC Adv 6:32858–32862

    CAS  CrossRef  Google Scholar 

  • Yildiz Y, Ulus R, Eris S et al (2016e) Functionalized multi-walled carbon nanotubes (f-MWCNT) as highly efficient and reusable heterogeneous catalysts for the synthesis of acridinedione derivatives. Chem Sel 1(13):3861–3865

    Google Scholar 

  • Yildiz Y, Kuzu S, Sen B et al (2017a) Different ligand based monodispersed metal nanoparticles decorated with rGO as highly active and reusable catalysts for the methanol oxidation. Int J Hydrog Energy 42(18):13061–13069

    CAS  CrossRef  Google Scholar 

  • Yildiz Y, Okyay TO, Sen B et al (2017b) Highly monodisperse Pt/Rh nanoparticles confined in the graphene oxide for highly efficient and reusable sorbents for methylene blue removal from aqueous solutions. Chem Sel 2(2):697–670

    CAS  Google Scholar 

  • Zhao H, Liao J, Peng M et al (2015) Synthesis of fluorene-based di-BODIPY dyes containing different aromatic linkers and their properties. Tetrahedron Lett 56:7145–7149

    CAS  CrossRef  Google Scholar 

  • Zhu P, Song F, Ma P, Li S, Wang Y (2018) Effective photocurrent generation in supramolecular porphyrin-fullerene conjugates assembled by crown ether-alkyl ammonium cation interactions. Dyes Pigments. https://doi.org/10.1016/j.dyepig.2018.01.012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Balli, B., Demirkan, B., Sen, B., Sen, F. (2019). Photocatalysts for Artificial Photosynthesis. In: Inamuddin, Ahamed, M., Asiri, A., Lichtfouse, E. (eds) Nanophotocatalysis and Environmental Applications . Environmental Chemistry for a Sustainable World, vol 31. Springer, Cham. https://doi.org/10.1007/978-3-030-04949-2_5

Download citation