Skip to main content

Genetic and Epigenetic Mechanisms in Gastric Cancer

  • Chapter
  • First Online:
Gastric Cancer In The Precision Medicine Era

Part of the book series: Current Clinical Pathology ((CCPATH))

Abstract

Gastric cancer (GC) is a complex heterogeneous disease. The better understanding of the biology and genetics of the GC had promoted the development of new subtype-specific classification with the aim to improve prognostication and precision treatments. However, although, in the last decades, a great effort to better understand tumor pathogenesis had been introduced using complex omics approaches, currently genetic-based GC categories remain still quite unsatisfactory. An exception is the two emerging scientific and clinical consensus regarding hereditary syndromes predisposing to GC, GC with microsatellite instability and HER2 gene amplification. We expect that the potential improvement allowing morphomolecular classification of GC based on the combination of clinicopathologic and molecular features could lead to a classification acceptable for a personalized prognostication and treatment of the GC in the next future. Results obtained still now are encouraging and open the way to persevere in this direction jointing morphohistopathological and molecular genetic data for a more precise classification of GC.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Torre LA, Bray F, Siegel RL. Global cancer statistics. CA Cancer J Clin. 2015;65:87–108.

    Article  PubMed  Google Scholar 

  2. Lauren P. The two histological main types of gastric carcinoma: diffuse and so-called intestinal-type carcinoma. An attempt at a histo-clinical classification. Acta Pathol Microbiol Scand. 1965;64:31–49.

    Article  CAS  PubMed  Google Scholar 

  3. Aaltonen LA, Hamilton SR. World Health Organization. Lyon: IARC Press/Oxford University Press; 2000; Hamilton SR, Aaltonen LA, editors. Pathology and genetics of tumours of the digestive system.

    Google Scholar 

  4. Corso S, Giordano S. How can gastric cancer molecular profiling guide future therapies? Trends Mol Med. 2016;22(7):534–44.

    Article  PubMed  Google Scholar 

  5. Jemal A, Siegel R, Xu J, et al. Cancer statistics. CA Cancer J Clin. 2010;60:277–300.

    Article  PubMed  Google Scholar 

  6. He YT, Hou J, Chen ZF. Trends in incidence of esophageal and gastric cardia cancer in high risk areas in China. Eur J Cancer Prev. 2008;17:71–6.

    Article  PubMed  Google Scholar 

  7. Devesa SS, Blot WJ, Fraumeni JF Jr. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States. Cancer. 1998;83:2049–53.

    Article  CAS  PubMed  Google Scholar 

  8. Maeda H, Okabayashi T, Nishimori I. Clinicopathologic features of adenocarcinoma at the gastric cardia: is it different from distal cancer of the stomach. J Am Coll Surg. 2008;206:306–10.

    Article  PubMed  Google Scholar 

  9. Bosman FT, Carneiro F, Hruban RH, et al. World Health Organization classification of tumours of the digestive system. Lyon: IARC Press, International Agency for Research on Cancer. 2010;

    Google Scholar 

  10. Marshall BJ, Windsor HM. The relation of Helicobacter pylori to gastric adenocarcinoma and lymphoma: pathophysiology, epidemiology, screening, clinical presentation, treatment, and prevention. Med Clin North Am. 2005;89(2):313–44.

    Article  PubMed  Google Scholar 

  11. La Vecchia C, Negri E, Franceschi S, Gentile A. Family history and the risk of stomach and colorectal cancer. Cancer. 1992;70:50–5.

    Article  PubMed  Google Scholar 

  12. Garziera M, Canzonieri V, Cannizzaro R, et al. Identification and characterization of CDH1 germline variants in sporadic gastric cancer patients and in individuals at risk of gastric cancer. PLoS One. 2013;8:e77035.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pinheiro H, Oliveira C, Seruca R, Carneiro F. Hereditary diffuse gastric cancer – pathophysiology and clinical management. Best Pract Res Clin Gastroenterol. 2014;28:1055–68.

    Article  PubMed  Google Scholar 

  14. van Roy F. Beyond E-cadherin: roles of other cadherin superfamily members in cancer. Nat Rev Cancer. 2014;14:121–34.

    Article  PubMed  CAS  Google Scholar 

  15. Repetto O, De Paoli P, De Re V, Canzonieri V, Cannizzaro R. Levels of soluble E-cadherin in breast, gastric, and colorectal cancers. Biomed Res Int. 2014;2014:408047.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Paredes J, Figueiredo J, Albergaria A, et al. Epithelial E- and P-cadherins: role and clinical significance in cancer. Biochim Biophys Acta. 1826;2012:297–311.

    Google Scholar 

  17. Guilford P, Hopkins J, Harraway J. E-cadherin germline mutations in familial gastric cancer. Nature. 1998;392:402–5.

    Article  CAS  PubMed  Google Scholar 

  18. Fitzgerald RC, Hardwick R, Huntsman D, et al. Hereditary diffuse gastric cancer: updated consensus guidelines for clinical management and directions for future research. J Med Genet. 2010;47:436–44.

    Article  CAS  PubMed  Google Scholar 

  19. Caggiari L, Miolo G, Canzonieri V, et al. A new mutation of the CDH1 gene in a patient with an aggressive signet-ring cell carcinoma of the stomach. Cancer Biol Ther. 2017;13:1–6.

    Google Scholar 

  20. Pinheiro H, Bordeira-Carrico R, Seixas S. Allele-specific CDH1 downregulation and hereditary diffuse gastric cancer. Hum Mol Genet. 2010;19:943–52.

    Article  CAS  PubMed  Google Scholar 

  21. Majewski IJ, Kluijt I, Cats A. An alpha-E-catenin (CTNNA1) mutation in hereditary diffuse gastric cancer. J Pathol. 2013;229:621–9.

    Article  CAS  PubMed  Google Scholar 

  22. Gaston D, Hansford S, Oliveira C, et al. Germline mutations in MAP 3K6 are associated with familial gastric cancer. PLoS Genet. 2014;10:e1004669.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Donner I, Kiviluoto T, Ristimaki A, Aaltonen LA, Vahteristo P. Exome sequencing reveals three novel candidate predisposition genes for diffuse gastric cancer. Fam Cancer. 2015;14:241–6.

    Article  CAS  PubMed  Google Scholar 

  24. Hinck L, Nathke IS, Papkoff J, Nelson WJ. Dynamics of cadherin/catenin complex formation: novel protein interactions and pathways of complex assembly. J Cell Biol. 1994;125:1327–40.

    Article  CAS  PubMed  Google Scholar 

  25. de-Freitas-Junior JC, Carvalho S, Dias AM, et al. Insulin/IGF-I signaling pathways enhances tumor cell invasion through bisecting GlcNAc N-glycans modulation. an interplay with E-cadherin. PLoS One. 2013;8:e81579.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Li J, Woods SL, Healey S, et al. Point mutations in Exon 1B of APC reveal gastric adenocarcinoma and proximal polyposis of the stomach as a familial adenomatous polyposis variant. Am J Hum Genet. 2016;98:830–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Aarnio M, Salovaara R, Aaltonen LA, Mecklin JP, Jarvinen HJ. Features of gastric cancer in hereditary non-polyposis colorectal cancer syndrome. Int J Cancer. 1997;74:551–5.

    Article  CAS  PubMed  Google Scholar 

  28. Varley JM, McGown G, Thorncroft M, et al. An extended Li-Fraumeni kindred with gastric carcinoma and a codon 175 mutation in TP53. J Med Genet. 1995;32:942–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Friedenson B. BRCA1 and BRCA2 pathways and the risk of cancers other than breast or ovarian. Med Gen Med. 2005;7:60.

    Google Scholar 

  30. Utsunomiya J, Gocho H, Miyanaga T, Hamaguchi E, Kashimure A. Peutz-Jeghers syndrome: its natural course and management. Johns Hopkins Med J. 1975;136:71–82.

    CAS  PubMed  Google Scholar 

  31. Lynch HT, Grady W, Suriano G, Huntsman D. Gastric cancer: new genetic developments. J Surg Oncol. 2005;90:114–33.

    Article  CAS  PubMed  Google Scholar 

  32. D’Errico M, de Rinaldis E, Blasi MF, et al. Genome-wide expression profile of sporadic gastric cancers with microsatellite instability. Eur J Cancer. 2009;45:461–9.

    Article  PubMed  CAS  Google Scholar 

  33. Hong Y, Shi J, Ge Z, Wu H. Associations between mutations of the cell cycle checkpoint kinase 2 gene and gastric carcinogenesis. Mol Med Rep. 2017;16:4287–92.

    Article  CAS  PubMed  Google Scholar 

  34. Hemminki A, Markie D, Tomlinson I, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature. 1998;391:184–7.

    Article  CAS  PubMed  Google Scholar 

  35. Howe JR, Roth S, Ringold JC, et al. Mutations in the SMAD4/DPC4 gene in juvenile polyposis. Science. 1998;280:1086–8.

    Article  CAS  PubMed  Google Scholar 

  36. Rugge M, Genta RM, Di MF, et al. Gastric cancer as preventable disease. Clin Gastroenterol Hepatol. 2017;15:1833–43.

    Article  PubMed  Google Scholar 

  37. Padmanabhan N, Ushijima T, Tan P. How to stomach an epigenetic insult: the gastric cancer epigenome. Nat Rev Gastroenterol Hepatol. 2017;14:467–78.

    PubMed  Google Scholar 

  38. He D, Zhang YW, Zhang NN, et al. Aberrant gene promoter methylation of p16, FHIT, CRBP1, WWOX, and DLC-1 in Epstein-Barr virus-associated gastric carcinomas. Med Oncol. 2015;32:92.

    Article  PubMed  CAS  Google Scholar 

  39. Maekita T, Nakazawa K, Mihara M, et al. High levels of aberrant DNA methylation in Helicobacter pylori-infected gastric mucosae and its possible association with gastric cancer risk. Clin Cancer Res. 2006;12:989–95.

    Article  CAS  PubMed  Google Scholar 

  40. Funata S, Matsusaka K, Yamanaka R, et al. Histone modification alteration coordinated with acquisition of promoter DNA methylation during Epstein-Barr virus infection. Oncotarget. 2017;8:55265–79.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Zabaleta J. MicroRNA: a bridge from H. pylori infection to gastritis and gastric cancer development. Front Genet. 2012;3:294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Hayashi Y, Tsujii M, Wang J, et al. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut. 2013;62:1536–46.

    Article  CAS  PubMed  Google Scholar 

  43. Fassan M, Saraggi D, Balsamo L, et al. Let-7c down-regulation in Helicobacter pylori-related gastric carcinogenesis. Oncotarget. 2016;7:4915–24.

    Article  PubMed  Google Scholar 

  44. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Google Scholar 

  45. Murphy G, Pfeiffer R, Camargo MC, Rabkin CS. Meta-analysis shows that prevalence of Epstein-Barr virus-positive gastric cancer differs based on sex and anatomic location. Gastroenterology. 2009;137:824–33.

    Article  PubMed  Google Scholar 

  46. Wong SS, Kim KM, Ting JC, et al. Genomic landscape and genetic heterogeneity in gastric adenocarcinoma revealed by whole-genome sequencing. Nat Commun. 2014;5:5477.

    Article  PubMed  Google Scholar 

  47. Silva TC, Leal MF, Calcagno DQ, et al. hTERT, MYC and TP53 deregulation in gastric preneoplastic lesions. BMC Gastroenterol. 2012;12:85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Garattini SK, Basile D, Cattaneo M, et al. Molecular classifications of gastric cancers: novel insights and possible future applications. World J Gastrointest Oncol. 2017;9:194–208.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol. 2010;17:1471–4.

    Article  PubMed  Google Scholar 

  50. Fuchs CS, Tomasek J, Yong CJ, et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): an international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet. 2014;383:31–9.

    Article  CAS  PubMed  Google Scholar 

  51. Shitara K, Muro K, Shimada Y, et al. Subgroup analyses of the safety and efficacy of ramucirumab in Japanese and Western patients in RAINBOW: a randomized clinical trial in second-line treatment of gastric cancer. Gastric Cancer. 2016;19:927–38.

    Article  CAS  PubMed  Google Scholar 

  52. Bang YJ, Van CE, Feyereislova A, et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): a phase 3, open-label, randomised controlled trial. Lancet. 2010;376:687–97.

    Article  CAS  PubMed  Google Scholar 

  53. Yousefi H, Yuan J, Keshavarz-Fathi M, Murphy JF, Rezaei N. Immunotherapy of cancers comes of age. Expert Rev Clin Immunol. 2017;13:1001–15.

    Article  CAS  PubMed  Google Scholar 

  54. Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Uyttenhove C, Pilotte L, Theate I, et al. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med. 2003;9:1269–74.

    Article  CAS  PubMed  Google Scholar 

  57. Rosenberg JE, Hoffman-Censits J, Powles T, et al. Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial. Lancet. 2016;387:1909–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chalmers ZR, Connelly CF, Fabrizio D, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Panda A, Mehnert JM, Hirshfield KM, et al. Immune activation and benefit from avelumab in EBV-positive gastric cancer. J Natl Cancer Inst. 2018;110(3):316–20.

    Article  PubMed  Google Scholar 

  60. Dolcetti R, Gloghini A, De VS, et al. Characteristics of EBV-infected cells in HIV-related lymphadenopathy: implications for the pathogenesis of EBV-associated and EBV-unrelated lymphomas of HIV-seropositive individuals. Int J Cancer. 1995;63:652–9.

    Article  CAS  PubMed  Google Scholar 

  61. De Re V, Boiocchi M, De VS, et al. Subtypes of Epstein-Barr virus in HIV-1-associated and HIV-1-unrelated Hodgkin’s disease cases. Int J Cancer. 1993;54:895–8.

    Article  PubMed  Google Scholar 

  62. Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.

    Article  CAS  PubMed  Google Scholar 

  63. Ali AS, Al-Shraim M, Al-Hakami AM, Jones IM. Epstein-Barr virus: clinical and epidemiological revisits and genetic basis of oncogenesis. Open Virol J. 2015;9:7–28.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dolcetti R, Zancai P, De Re V, et al. Epstein-Barr virus strains with latent membrane protein-1 deletions: prevalence in the Italian population and high association with human immunodeficiency virus-related Hodgkin’s disease. Blood. 1997;89:1723–31.

    CAS  PubMed  Google Scholar 

  65. Dolcetti R, Quaia M, Gloghini A, et al. Biologically relevant phenotypic changes and enhanced growth properties induced in B lymphocytes by an EBV strain derived from a histologically aggressive Hodgkin’s disease. Int J Cancer. 1999;80:240–9.

    Article  CAS  PubMed  Google Scholar 

  66. Cohen JI, Bollard CM, Khanna R, Pittaluga S. Current understanding of the role of Epstein-Barr virus in lymphomagenesis and therapeutic approaches to EBV-associated lymphomas. Leuk Lymphoma. 2008;49:27–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boiocchi M, De Re V, Gloghini A, et al. High incidence of monoclonal EBV episomes in Hodgkin’s disease and anaplastic large-cell KI-1-positive lymphomas in HIV-1-positive patients. Int J Cancer. 1993;54:53–9.

    Article  CAS  PubMed  Google Scholar 

  68. Hammerschmidt W. The epigenetic life cycle of Epstein-Barr virus. Curr Top Microbiol Immunol. 2015;390:103–17.

    CAS  PubMed  Google Scholar 

  69. Tempera I, Lieberman PM. Epigenetic regulation of EBV persistence and oncogenesis. Semin Cancer Biol. 2014;26:22–9.

    Article  CAS  PubMed  Google Scholar 

  70. Lieberman PM. Chromatin structure of Epstein-Barr virus latent episomes. Curr Top Microbiol Immunol. 2015;390:71–102.

    CAS  PubMed  Google Scholar 

  71. Boiocchi M, Carbone A, De Re V, Dolcetti R. Is the Epstein-Barr virus involved in Hodgkin’s disease? Tumori. 1989;75:345–50.

    Article  CAS  PubMed  Google Scholar 

  72. Grywalska E, Rolinski J. Epstein-Barr virus-associated lymphomas. Semin Oncol. 2015;42:291–303.

    Article  PubMed  Google Scholar 

  73. He C, Huang X, Su X, et al. The association between circulating tumor cells and Epstein-Barr virus activation in patients with nasopharyngeal carcinoma. Cancer Biol Ther. 2017;18:888–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ersing I, Nobre L, Wang LW, et al. A temporal proteomic map of Epstein-Barr virus lytic replication in B cells. Cell Rep. 2017;19:1479–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chiu YF, Sugden B. Epstein-Barr virus: the path from latent to productive infection. Annu Rev Virol. 2016;3:359–72.

    Article  CAS  PubMed  Google Scholar 

  76. Ghosh SK, Perrine SP, Faller DV. Advances in virus-directed therapeutics against Epstein-Barr virus-associated malignancies. Adv Virol. 2012;2012:509296.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Hui KF, Cheung AK, Choi CK, et al. Inhibition of class I histone deacetylases by romidepsin potently induces Epstein-Barr virus lytic cycle and mediates enhanced cell death with ganciclovir. Int J Cancer. 2016;138:125–36.

    Article  CAS  PubMed  Google Scholar 

  78. Wildeman MA, Novalic Z, Verkuijlen SA, et al. Cytolytic virus activation therapy for Epstein-Barr virus-driven tumors. Clin Cancer Res. 2012;18:5061–70.

    Article  CAS  PubMed  Google Scholar 

  79. Wang M, Wu W, Zhang Y, Yao G, Gu B. Rapamycin enhances lytic replication of Epstein-Barr virus in gastric carcinoma cells by increasing the transcriptional activities of immediate-early lytic promoters. Virus Res. 2017;244:173–80. https://doi.org/10.1016/j.virusres.2017.11.021.

    Article  CAS  PubMed  Google Scholar 

  80. Murata T. Regulation of Epstein-Barr virus reactivation from latency. Microbiol Immunol. 2014;58:307–17.

    Article  CAS  PubMed  Google Scholar 

  81. Wu CC, Fang CY, Hsu HY, et al. EBV reactivation as a target of luteolin to repress NPC tumorigenesis. Oncotarget. 2016;7:18999–9017.

    PubMed  PubMed Central  Google Scholar 

  82. Turrini R, Merlo A, Martorelli D, et al. A BARF1-specific mAb as a new immunotherapeutic tool for the management of EBV-related tumors. Oncoimmunology. 2017;6:e1304338.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Park C, Cho J, Lee J, et al. Host immune response index in gastric cancer identified by comprehensive analyses of tumor immunity. Oncoimmunology. 2017;6:e1356150.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Ayers M, Lunceford J, Nebozhyn M, et al. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Boku N. HER2-positive gastric cancer. Gastric Cancer. 2014;17:1–12.

    Article  CAS  PubMed  Google Scholar 

  86. Sukawa Y, Yamamoto H, Nosho K, et al. HER2 expression and PI3K-Akt pathway alterations in gastric cancer. Digestion. 2014;89:12–7.

    Article  CAS  PubMed  Google Scholar 

  87. Kelly CM, Janjigian YY. The genomics and therapeutics of HER2-positive gastric cancer-from trastuzumab and beyond. J Gastrointest Oncol. 2016;7:750–62.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valli De Re .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

De Re, V., Dolcetti, R. (2019). Genetic and Epigenetic Mechanisms in Gastric Cancer. In: Canzonieri, V., Giordano, A. (eds) Gastric Cancer In The Precision Medicine Era. Current Clinical Pathology. Humana, Cham. https://doi.org/10.1007/978-3-030-04861-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04861-7_2

  • Published:

  • Publisher Name: Humana, Cham

  • Print ISBN: 978-3-030-04860-0

  • Online ISBN: 978-3-030-04861-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics