Skip to main content

Effect of Exercise on Adult Stem Cells

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases

Abstract

Obesity, diabetes, and cardiovascular diseases (CVD) are rapidly increasing worldwide. Regular participation in physical activities or exercise programs of adequate intensity and volume to promote substantial increases in cardiorespiratory fitness attenuates the incidence of these diseases. For several decades, the effect of exercise has mostly been estimated by biochemical parameters. Relatively little is known about the effects of exercise on adult stem cells which play a major role in tissue remodeling and tissue regeneration. In this review we will focus mainly on the effects of aerobic exercise on two adult stem/progenitor cells: endothelial progenitor cells (EPCs) and mesenchymal stromal cells (MSCs). These two cell types are precursors for endothelium and mesenchymal tissue (fat, bone, muscle, and cartilage), respectively, and are key players in maintenance of cardiovascular homeostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADMA:

Asymmetric dimethylarginine

ALPL:

Alkaline phosphatase, liver/bone/kidney

BAT:

Brown adipose tissue

BMP:

Bone morphogenic protein

C/EBPα:

CCAAT/enhancer-binding protein α

CAD:

Coronary artery disease

CDC:

Centers for Disease Control and Prevention

CVD:

Cardiovascular disease

Drp-1:

Dynamin-related protein-1

EPCs:

Endothelial progenitor cells

INS:

Insulin

ION:

Idiopathic osteonecrosis

MFN1 and 2:

Mitofusins 1 and 2

MSCs:

Mesenchymal stem cells

NIDDK:

National Institute of Diabetes and Digestive and Kidney Diseases

NO:

Nitric oxide

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1-alpha

POMC:

Proopiomelanocortin

PPARγ-2:

Peroxisome proliferator-activated receptor gamma-2

ROS:

Reactive oxygen species

RUNX2:

Runt-related transcription factor 2

SDF-1:

Stromal cell-derived factor 1

SDF1alpha:

Stromal cell-derived alpha protein

T2DM:

Type 2 diabetes mellitus

UCP-1:

Uncoupling protein 1

VEGF:

Vascular endothelial growth factor

WAT:

White adipose tissue

References

  1. NIDDK, NIH, Overweight and obesity statistics, 2014. https://www.niddk.nih.gov/health-information/health-statistics/overweight-obesity.

  2. World Health Organization. Fact sheet. Diabetes. 2017. http://www.who.int/mediacentre/factsheets/fs312/en/.

  3. Center for Disease Control and Prevention. High blood pressure facts. 2016. https://www.cdc.gov/dhdsp/data_statistics/fact_sheets/fs_bloodpressure.htm.

  4. Center for Disease Control and Prevention. Stroke fact sheet. 2017. https://www.cdc.gov/stroke/facts.htm.

  5. Center for Disease Control and Prevention. Heart disease fact. 2017. https://www.cdc.gov/heartdisease/facts.htm.

  6. Center for Disease Control and Prevention. National diabetes statistics report. 2017. https://www.cdc.gov/diabetes/data/statistics/statistics-report.html.

  7. Center for Disease Control and Prevention. Adult obesity facts. 2017. https://www.cdc.gov/obesity/data/adult.html.

  8. American Diabetes Association. Economic costs of diabetes in the U.S. in 2012. Diabetes Care. 2013;36(4):1033–46.

    Article  Google Scholar 

  9. Kokkinos P. Physical activity, health benefits, and mortality risk. ISRN Cardiol. 2012;2012:718789.

    Article  Google Scholar 

  10. Center for Disease Control and Prevention. Physical activity and health. 2015. https://www.cdc.gov/physicalactivity/basics/pa-health/index.htm.

  11. Moore SC, Patel AV, Matthews CE, Berrington de Gonzalez A, Park Y, Katki HA, et al. Leisure time physical activity of moderate to vigorous intensity and mortality: a large pooled cohort analysis. PLoS Med. 2012;9(11):e1001335.

    Article  Google Scholar 

  12. Hass R, Kasper C, Böhm S, Jacobs R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun Signal. 2011;9:12.

    Article  CAS  Google Scholar 

  13. Yoder MC. Human endothelial progenitor cells. Cold Spring Harb Perspect Med. 2012;2(7):a006692.

    Article  Google Scholar 

  14. Van Craenenbroeck EM, Conraads VM. Endothelial progenitor cells in vascular health: focus on lifestyle. Microvasc Res. 2010;79(3):184–92.

    Article  Google Scholar 

  15. Pernas L, Scorrano L. Mito-morphosis: mitochondrial fusion, fission, and cristae remodeling as key mediators of cellular function. Annu Rev Physiol. 2016;78:505–31.

    Article  CAS  Google Scholar 

  16. Schrepfer E, Scorrano L. Mitofusins, from mitochondria to metabolism. Mol Cell. 2016;61(5):683–94.

    Article  CAS  Google Scholar 

  17. Yan Z, Lira VA, Greene NP. Exercise training-induced regulation of mitochondrial quality. Exerc Sport Sci Rev. 2012 Jul;40(3):159–64.

    PubMed  PubMed Central  Google Scholar 

  18. Gusdon AM, Callio J, Distefano G, O'Doherty RM, Goodpaster BH, Coen PM, et al. Exercise increases mitochondrial complex I activity and DRP1 expression in the brains of aged mice. Exp Gerontol. 2017;90:1–13.

    Article  CAS  Google Scholar 

  19. Fealy CE, Mulya A, Lai N, Kirwan JP. Exercise training decreases activation of the mitochondrial fission protein dynamin-related protein-1 in insulin-resistant human skeletal muscle. J Appl Physiol. 2014;117(3):239–45.

    Article  CAS  Google Scholar 

  20. Hsu YC, Wu YT, Yu TH, Wei YH. Mitochondria in mesenchymal stem cell biology and cell therapy: from cellular differentiation to mitochondrial transfer. Semin Cell Dev Biol. 2016;52:119–31.

    Article  CAS  Google Scholar 

  21. Kundu N, Domingues CC, Chou C, Ahmadi N, Houston S, Jerry DJ, Sen S. J Am Heart Assoc. 2017;6(4). pii: e005146. https://doi.org/10.1161/JAHA.116.005146. PMID: 28365567.

  22. Boppart MD, Lisio M, Witkowski S. Exercise and stem cells. Prog Mol Biol Transl Sci. 2015;135:423–56.

    Article  CAS  Google Scholar 

  23. Laufs U, Werner N, Link A, Endres M, Wassmann S, Jürgens K, et al. Physical training increases endothelial progenitor cells, inhibits neointima formation, and enhances angiogenesis. Circulation. 2004;109(2):220–6.

    Article  CAS  Google Scholar 

  24. Steiner S, Niessner A, Ziegler S, Richter B, Seidinger D, Pleiner J, et al. Endurance training increases the number of endothelial progenitor cells in patients with cardiovascular risk and coronary artery disease. Atherosclerosis. 2005;181(2):305–10.

    Article  CAS  Google Scholar 

  25. Jenkins NT, Witkowski S, Spangenburg EE, Hagberg JM. Effects of acute and chronic endurance exercise on intracellular nitric oxide in putative endothelial progenitor cells: role of NAPDH oxidase. Am J Physiol Heart Circ Physiol. 2009;297(5):H1798–805.

    Article  CAS  Google Scholar 

  26. Zhang KR, Liu HT, Zhang HF, Zhang QJ, Li QX, Yu QJ, et al. Long-term aerobic exercise protects the heart against ischemia/reperfusion injury via PI3 kinase-dependent and Akt-mediated mechanism. Apoptosis. 2007;12(9):1579–88.

    Article  CAS  Google Scholar 

  27. Gensch C, Clever Y, Werner C, Hanhoun M, Böhm M, Laufs U. Regulation of endothelial progenitor cells by prostaglandin E1 via inhibition of apoptosis. J Mol Cell Cardiol. 2007;42(3):670–7.

    Article  CAS  Google Scholar 

  28. Adams V, Lenk K, Linke A, Lenz D, Erbs S, Sandri M, et al. Increase of circulating endothelial progenitor cells in patients with coronary artery disease after exercise-induced ischemia. Arterioscler Thromb Vasc Biol. 2004;24(4):684–90.

    Article  CAS  Google Scholar 

  29. Sarto P, Balducci E, Balconi G, Fiordaliso F, Merlo L, Tuzzato G, et al. Effects of exercise training on endothelial progenitor cells in patients with chronic heart failure. J Card Fail. 2007;13(9):701–8.

    Article  CAS  Google Scholar 

  30. Hoetzer GL, Van Guilder GP, Irmiger HM, Keith RS, Stauffer BL, DeSouza CA. Aging, exercise, and endothelial progenitor cell clonogenic and migratory capacity in men. J Appl Physiol (1985). 2007;102(3):847–52.

    Article  Google Scholar 

  31. Thijssen DH, Vos JB, Verseyden C, van Zonneveld AJ, Smits P, Sweep FC, et al. Haematopoietic stem cells and endothelial progenitor cells in healthy men: effect of aging and training. Aging Cell. 2006;5(6):495–503.

    Article  CAS  Google Scholar 

  32. Sen S, Witkowski S, Lagoy A, Islam AM. A six-week home exercise program improves endothelial function and CD34+ circulating progenitor cells in patients with pre-diabetes. Journal of Endocrinology and Metabolism. 2015;5(1–2):163–71.

    Article  CAS  Google Scholar 

  33. Van Craenenbroeck EM, Bruyndonckx L, Van Berckelaer C, Hoymans VY, Vrints CJ, Conraads VM. The effect of acute exercise on endothelial progenitor cells is attenuated in chronic heart failure. Eur J Appl Physiol. 2011;111(9):2375–9.

    Article  Google Scholar 

  34. Ajijola OA, Dong C, Herderick EE, Ma Q, Goldschmidt-Clermont PJ, Yan Z. Voluntary running suppresses proinflammatory cytokines and bone marrow endothelial progenitor cell levels in apolipoprotein-E-deficient mice. Antioxid Redox Signal. 2009;11(1):15–23.

    Article  CAS  Google Scholar 

  35. Schlager O, Giurgea A, Schuhfried O, Seidinger D, Hammer A, Gröger M, et al. Exercise training increases endothelial progenitor cells and decreases asymmetric dimethylarginine in peripheral arterial disease: a randomized controlled trial. Atherosclerosis. 2011;217(1):240–8.

    Article  CAS  Google Scholar 

  36. Van Craenenbroeck EM, Beckers PJ, Possemiers NM, Wuyts K, Frederix G, Hoymans VY, et al. Exercise acutely reverses dysfunction of circulating angiogenic cells in chronic heart failure. Eur Heart J. 2010;31(15):1924–34.

    Article  Google Scholar 

  37. Rehman J, Li J, Parvathaneni L, Karlsson G, Panchal VR, Temm CJ, et al. Exercise acutely increases circulating endothelial progenitor cells and monocyte−/macrophage-derived angiogenic cells. J Am Coll Cardiol. 2004;43(12):2314–8.

    Article  Google Scholar 

  38. Fernandes T, Nakamuta JS, Magalhães FC, Roque FR, Lavini-Ramos C, Schettert IT, et al. Exercise training restores the endothelial progenitor cells number and function in hypertension: implications for angiogenesis. J Hypertens. 2012;30(11):2133–43.

    Article  CAS  Google Scholar 

  39. Wahl P, Brixius K, Bloch W. Exercise-induced stem cell activation and its implication for cardiovascular and skeletal muscle regeneration. Minim Invasive Ther Allied Technol. 2008;17(2):91–9.

    Article  Google Scholar 

  40. Laufs U, Urhausen A, Werner N, Scharhag J, Heitz A, Kissner G, et al. Running exercise of different duration and intensity: effect on endothelial progenitor cells in healthy subjects. Eur J Cardiovasc Prev Rehabil. 2005;12(4):407–14.

    Article  Google Scholar 

  41. Van Craenenbroeck EM, Vrints CJ, Haine SE, Vermeulen K, Goovaerts I, Van Tendeloo VF, et al. A maximal exercise bout increases the number of circulating CD34+/KDR+ endothelial progenitor cells in healthy subjects. Relation with lipid profile. J Appl Physiol (1985). 2008;104(4):1006–13.

    Article  Google Scholar 

  42. Sen S, Domingues CC, Rouphael C, Chou C, Kim C, Yadava N. Genetic modification of human mesenchymal stem cells helps to reduce adiposity and improve glucose tolerance in an obese diabetic mouse model. Stem Cell Res Ther. 2015;6:242. PMID: 26652025

    Google Scholar 

  43. Zanini C, Bruno S, Mandili G, Baci D, Cerutti F, Cenacchi G, et al. Differentiation of mesenchymal stem cells derived from pancreatic islets and bone marrow into islet-like cell phenotype. PLoS One. 2011;6(12):e28175.

    Article  CAS  Google Scholar 

  44. Stagg J, Galipeau J. Mechanisms of immune modulation by mesenchymal stromal cells and clinical translation. Curr Mol Med. 2013;13(5):856–67.

    Article  CAS  Google Scholar 

  45. Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8(4):315–7.

    Article  CAS  Google Scholar 

  46. Schmidt A, Bierwirth S, Weber S, Platen P, Schinköthe T, Bloch W. Short intensive exercise increases the migratory activity of mesenchymal stem cells. Br J Sports Med. 2009;43(3):195–8.

    Article  CAS  Google Scholar 

  47. Emmons R, Niemiro GM, Owolabi O, De Lisio M. Acute exercise mobilizes hematopoietic stem and progenitor cells and alters the mesenchymal stromal cell secretome. J Appl Physiol. 2016;120(6):624–32.

    Article  CAS  Google Scholar 

  48. Shin MS, Park HK, Kim TW, Ji ES, Lee JM, Choi HS, et al. Neuroprotective effects of bone marrow stromal cell transplantation in combination with treadmill exercise following traumatic brain injury. Int Neurourol J. 2016;20(Suppl 1):S49–56.

    Article  Google Scholar 

  49. Zhang YX, Yuan MZ, Cheng L, Lin LZ, Du HW, Chen RH, et al. Treadmill exercise enhances therapeutic potency of transplanted bone mesenchymal stem cells in cerebral ischemic rats via anti-apoptotic effects. BMC Neurosci. 2015;16:56. Arch Phys Med Rehabil 2015; 96(3):532–9.

    Article  Google Scholar 

  50. Gibbs N, Diamond R, Sekyere EO, Thomas WD. Management of knee osteoarthritis by combined stromal vascular fraction cell therapy, platelet-rich plasma, and musculoskeletal exercises: a case series. J Pain Res. 2015;8:799–806.

    Article  Google Scholar 

  51. Aoyama T, Fujita Y, Madoba K, Nankaku M, Yamada M, Tomita M, et al. Rehabilitation program after mesenchymal stromal cell transplantation augmented by vascularized bone grafts for idiopathic osteonecrosis of the femoral head: a preliminary study. Arch Phys Med Rehabil. 2015;96(3):532–9.

    Article  Google Scholar 

  52. Li R, Liang L, Dou Y, Huang Z, Mo H, Wang Y, et al. Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Biomed Res Int. 2015;2015:873251.

    PubMed  PubMed Central  Google Scholar 

  53. Liu SY, He YB, Deng SY, Zhu WT, Xu SY, Ni GX. Exercise affects biological characteristics of mesenchymal stromal cells derived from bone marrow and adipose tissue. Int Orthop. 2017;41(6):1199–209.

    Article  Google Scholar 

  54. Kundu N, Domingues CC, Paal E, Kokkinos P, Nylen E, Sen S. Effect of aerobic and resistance exercise training on fat derived mesenchymal stromal cells (MSCs) in subjects with prediabetes. Mol Ther. 2017;25(5):115. ASGCT Conference Abstract.

    Google Scholar 

  55. Cook D, Genever P. Regulation of mesenchymal stem cell differentiation. Adv Exp Med Biol. 2013;786:213–29.

    Article  CAS  Google Scholar 

  56. Marędziak M, Śmieszek A, Chrząstek K, Basinska K, Marycz K. Physical activity increases the total number of bone-marrow-derived mesenchymal stem cells, enhances their osteogenic potential, and inhibits their Adipogenic properties. Stem Cells Int. 2015;2015:379093.

    Article  Google Scholar 

  57. Yamaguchi S, Aoyama T, Ito A, Nagai M, Iijima H, Tajino J, et al. The effect of exercise on the early stages of mesenchymal stromal cell-induced cartilage repair in a rat osteochondral defect model. PLoS One. 2016;11(3):e0151580.

    Article  Google Scholar 

  58. Stanford KI, Middelbeek RJW, Goodyear LJ. Exercise effects on white adipose tissue: Beiging and metabolic adaptations. Diabetes. 2015;64:2361–8.

    Article  CAS  Google Scholar 

  59. Rodrigues KCC, Pereira RM, Campos TDP, Moura RF, Silva ASR, Cintra DE, et al. The role of physical exercise to improve the browning of white adipose tissue via POMC neurons. Front Cell Neurosci. 2018;12:88.

    Article  Google Scholar 

  60. Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cell. 2014;6(1):33–42.

    Article  Google Scholar 

  61. Dore FJ, Domingues CC, Ahmadi N, Kundu N, Kropotova Y, Houston S, Rouphael C, Mammadova A, Witkin L, Khiyami A, Amdur RL, Sen S. The synergistic effects of saxagliptin and metformin on CD34+ endothelial progenitor cells in early type 2 diabetes patients: a randomized clinical trial. Cardiovasc Diabetol. 2018;17:65.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabyasachi Sen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kundu, N., Domingues, C.C., Sen, S. (2019). Effect of Exercise on Adult Stem Cells. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics