Skip to main content

Physical Activity, Cardiorespiratory Fitness, and the Diabetes Spectrum

  • Chapter
  • First Online:
Cardiorespiratory Fitness in Cardiometabolic Diseases

Abstract

Physical activity and cardiorespiratory fitness greatly impact the diabetic spectrum of disorders such as prediabetes, gestational diabetes, and type 1 and type 2 diabetes. Epidemiologically, there is a strong and inverse association between fitness status and diabetes incidence. Randomized controlled trials have also shown that diabetes incidence is significantly reduced in individuals with prediabetes when a lifestyle intervention program is implemented and cardiorespiratory fitness improves. Although improvement in microvascular disease in these intervention trials has not been shown, mortality is decreased. Subjects with both DM1 and DM2 have reduced cardiorespiratory fitness. In those with early DM2, fitness strongly improves glycemic parameters in a dose-dependent manner to cardiorespiratory fitness. In more established diabetes, although the emphasis historically has been on the volume of the aerobic component of exercise, there is a bourgeoning additive benefit role for resistance training, and the consensus guidelines recommend a combination of aerobic and resistance activity as well as minimizing inactivity along with nutritional support. The role of high-intensity interval training, for those medically capable, has also been shown to increase cardiorespiratory fitness benefit with reduced investment in time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADA:

American Diabetes Association

CRF:

Cardiorespiratory fitness

CVD:

Cardiovascular disease

DM1:

Type 1 diabetes mellitus

DM2:

Type 2 diabetes mellitus

GDM:

Gestational diabetes mellitus

GLUT4:

Glucose transporter 4

HgbA1c:

Glycosylated hemoglobin A1c

HIIT:

High-intensity interval training

IGT:

Impaired glucose tolerance

IR:

Insulin resistance

VO2max:

maximal oxygen uptake

MVPA:

Moderate-vigorous physical activity

NNT:

Numbers needed to treat

RT:

Resistance training

References

  1. Banting FG, Best CH, Collip JB, Campbell WR, Fletcher AA. Pancreatic extracts in the treatment of diabetes mellitus. Can Med Assoc J. 1922;12:141–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. World Health Organization. Global status report on noncommunicable diseases 2010. Geneva: World Health Organization; 2011.

    Google Scholar 

  3. American Diabetes Association. Cardiovascular disease and risk management. Diabetes Care. 2017;40:S75–87.

    Article  Google Scholar 

  4. Morrish NJ, Wang SL, Stevens LK, Fuller JH, Keen H. Mortality and causes of death in the WHO multinational study of vascular disease in diabetes. Diabetologia. 2001;44(Suppl 2):S14–21.

    Article  PubMed  Google Scholar 

  5. Katsch D. Work therapy for diabetes patients. Die Arbeitstherapie der Zuckerkranken. Erg Physikal Diat Ther. 1939;1:1–36.

    Google Scholar 

  6. Hill AV, Long CNH, Lupton H. Muscular exercise, lactic acid and the supply and utilization of oxygen. Pt. 1-III. Proc R Soc. 1924;96:438.

    Article  CAS  Google Scholar 

  7. Henson J, Dunstan DW, Davies MJ, Yates T. Sedentary behaviour as a new behavioural target in the prevention and treatment of type 2 diabetes. Diabetes Metab Res Rev. 2016;32(Suppl 1):213–20.

    Article  PubMed  Google Scholar 

  8. Green S, Egana M, Baldi JC, Lamberts R, Regensteiner JG. Cardiovascular control during exercise in type 2 diabetes mellitus. J Diabetes Res. 2015;2015:654204.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Leite SA, Monk AM, Upham PA, Bergenstal RM. Low cardiorespiratory fitness in people at risk for type 2 diabetes: early marker for insulin resistance. Diabetol Metab Syndr. 2009;1:1–6.

    Article  Google Scholar 

  10. Fang ZY, Sharman J, Prins JB, Marwick TH. Determinants of exercise capacity in patients with type 2 diabetes. Diabetes Care. 2005;28:1643–8.

    Article  PubMed  Google Scholar 

  11. Wei M, Gibbons LW, Kampert JB, Nichaman MZ, Blair SN. Low cardiorespiratory fitness and physical inactivity as predictors of mortality in men with type 2 diabetes. Diabetes Care. 2000;132:605–11.

    CAS  Google Scholar 

  12. Myers J, Prakash M, Froelicher V, Do D, Partington S, Atwood JE. Exercise capacity and mortality among men referred for exercise testing. N Engl J Med. 2002;346:793–801.

    Article  PubMed  Google Scholar 

  13. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. β-Cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102–10.

    Article  CAS  PubMed  Google Scholar 

  14. Priya G, Kalra S. A review of insulin resistance in type 1 diabetes: is there a place for adjunctive metformin? Diabetes Ther. 2017;9:349. https://doi.org/10.1007/s13300-017-0333-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, et al. Diabetic microvascular disease: an endocrine society scientific statement. J Clin Endocrinol Metab. 2017;102(12):4343–410.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Skyler JS, Bergenstal R, Bonow RO, et al. Intensive glycemic control and the prevention of cardiovascular events: implications of the ACCORD, ADVANCE, and VA diabetes trials: a position statement of the American Diabetes Association and a scientific statement of the American College of Cardiology Foundation and the American Heart Association. Diabetes Care. 2009;32:187–92.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jensen TE, Richter EA. Regulation of glucose and glycogen metabolism during and after exercise. J Physiol. 2012;590(Pt 5):1069–76.

    Article  CAS  PubMed  Google Scholar 

  18. Coderre L, Kandror KV, Vallega G, Pilch PF. Identification and characterization of an exercise-sensitive pool of glucose transporters in skeletal muscle. J Biol Chem. 1995;270:27584–8.

    Article  CAS  PubMed  Google Scholar 

  19. Cline GW, Petersen KF, Krssak M, Shen J, Hundal RS, Trajanoski Z, et al. Impaired glucose transport as a cause of decreased insulin-stimulated muscle glycogen synthesis in type 2 diabetes. N Engl J Med. 1999;341:240–6.

    Article  CAS  PubMed  Google Scholar 

  20. Goodyear LJ, Kahn BB. Exercise, glucose transport, and insulin sensitivity. Annu Rev Med. 1998;49:235–61.

    Article  CAS  PubMed  Google Scholar 

  21. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017.

    Article  CAS  PubMed  Google Scholar 

  22. Prior SJ, Goldberg AP, Ortmyer HK, Chin ER, Chen D, Blumenthal JD, Ryan AS. Increased skeletal muscle capillarization independently enhances insulin sensitivity in older adults after exercise training and detraining. Diabetes. 2015;64:3386–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Meex RCR, Schrauwen-Hinderling VB, Moonen-Kornips E, Schaart G, Mensink M, Phielix E, et al. Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes. 2010;59:572–9.

    Article  CAS  PubMed  Google Scholar 

  24. Yardley JE, Alberga A, Kenny GP, Sigal RJ. Lifestyle issues: exercise. In: Holt RIG, Cockram CS, Flyvbjerg A, Goldstein BJ, editors. Textbook of diabetes. 4th ed. London: Wiley-Blackwell; 2010. p. 358–79.

    Chapter  Google Scholar 

  25. Laukkanen JA, Kurl S, Salonen JT. Cardiorespiratory fitness and physical activity as risk predictors of future atherosclerotic cardiovascular diseases. Curr Atheroscler Rep. 2002;4:468–76.

    Article  PubMed  Google Scholar 

  26. Sullivan PW, Morrato EH, Ghushchyan V, Wyatt HR, Hill JO. Obesity, inactivity, and the prevalence of diabetes and diabetes-related cardiovascular comorbidities in the U.S., 2000–2002. Diabetes Care. 2005;28:1599–603.

    Article  PubMed  Google Scholar 

  27. IDF Atlas 2017 – 8th ed. http://www.diabetesatlas.org/resources/2017-atlas.html.

  28. Selvin E, Wang D, Lee A, Bergenstal RM, Coresh J. Identifying trends in undiagnosed diabetes in U.S. adults by using confirmatory definition. Ann Int Med. 2017;167:769–76.

    Article  PubMed  Google Scholar 

  29. CDC. www.cdc.gov/diabetes/basics/type1.html.

  30. U.S. Department of Health and Human Services. 2008 Physical activity guidelines for Americans. Washington, DC: U.S. Government Printing Office; 2008.

    Google Scholar 

  31. Colberg SR, Sigal RJ, Yardley JE, Riddell MC, Dunstan DW, Dempsey PC, et al. Physical activity/exercise and diabetes: a position statement of the American Diabetes Association. Diabetes Care. 2016;39:2065–79.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Blair SN, Kohl HW 3rd, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA. 1989;262:2395–401.

    Article  CAS  PubMed  Google Scholar 

  33. Weinstein AR, Sesso HD, Lee IM, Cook NR, Manson JE, Buring JE, Gaziano JM. Relationship of physical activity vs body mass index with type 2 diabetes in women. JAMA. 2004;292:1188–94.

    Article  CAS  PubMed  Google Scholar 

  34. Swift DL, Lavie CJ, Johannsen NM, Arena R, Earnest CP, O'Keefe JH, et al. Physical activity, cardiorespiratory fitness, and exercise training in primary and secondary coronary prevention. Circ J. 2013;77:281–92.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases. Physiol Rev. 2017;97:1351–402.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Owen N, Leslie E, Salmon J, Fotheringham MJ. Environmental determinants of physical activity and sedentary behavior. Exerc Sport Sci Rev. 2000;28:153–8.

    CAS  PubMed  Google Scholar 

  37. Dunstan DW, Barr EL, Healy GN, Salmon J, Shaw JE, Balkau B, et al. Television viewing time and mortality: the Australian Diabetes, Obesity and Lifesyle Study (AusDiab). Circulation. 2010;121:384–91.

    Article  CAS  PubMed  Google Scholar 

  38. Hu FB, Li TY, Colditz GA, Willett WC, Manson JE. Television watching and other sedentary behaviors in relation to risk of obesity and type 2 diabetes mellitus in women. JAMA. 2003;289:1785–91.

    Article  PubMed  Google Scholar 

  39. Thyfault JP, Du M, Kraus WE, Levine JA, Booth FW. Physiology of sedentary behavior and its relationship to health outcomes. Med Sci Sports Exerc. 2015;47:1301–5.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Craft LL, Zderic TW, Gapstur SM, Vaniterson EH, Thomas DM, Siddique J, Hamilton MT. Evidence that women meeting physical activity guidelines do not sit less: an observational inclinometry study. Int J Behav Nutr Phys Act. 2012 Oct 4;9:122. https://doi.org/10.1186/1479-5868-9-122.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hamilton MT, Hamilton DG, Zderic TW. Sedentary behavior as a mediator of type 2 diabetes. Med Sport Sci. 2014;60:11–26.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Morrato EH, Hill JO, Wyatt HR, Ghushchyan V, Sullivan PW. Are health care professionals advising patients with diabetes or at risk for developing diabetes to exercise more? Diabetes Care. 2006;29:543–8.

    Article  PubMed  Google Scholar 

  43. Morrato EH, Hill JO, Wyatt HR, Ghushchyan V, Sullivan PW. Physical activity in US adults with diabetes and at risk of diabetes. Diabetes Care. 2003;30:203–9.

    Article  Google Scholar 

  44. Reusch JE, Bridenstine M, Regensteiner JG. Type 2 diabetes mellitus and exercise impairment. Rev Endocr Metab Disord. 2013;14:77–86.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Helmrich SP, Ragland DR, Leung RW, Paffenbarger RS. Physical activity and reduced occurrence of non insulin dependent diabetes mellitus. New Engl J Med. 1991;325:147–52.

    Article  CAS  PubMed  Google Scholar 

  46. Wei M, Gibbons LW, Mitchell TL, Kampert JB, Lee CD, Blair SN. The association between cardiorespiratory fitness and impaired fasting glucose and type 2 diabetes mellitus in men. Ann Intern Med. 1999;130:89–96.

    Article  CAS  PubMed  Google Scholar 

  47. Sawada SS, Lee IM, Muto T, Matuszaki K, Blair SN. Cardiorespiratory fitness and the incidence of type 2 diabetes: prospective study of Japanese men. Diabetes Care. 2003;26:2918–22.

    Article  PubMed  Google Scholar 

  48. Sui X, Hooker SP, Lee IM, et al. A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women. Diabetes Care. 2008;31:550–5.

    Article  PubMed  Google Scholar 

  49. Crump C, Sundquist J, Winkleby MA, Sieh W, Sundquist K. Physical fitness among Swedish military conscripts and long-term risk for type 2 diabetes mellitus: a cohort study. Ann Intern Med. 2016;164:577–82.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zaccardi F, O'Donovan G, Webb DR, Yates T, Kurl S, Khunti K, et al. Cardiorespiratory fitness and risk of type 2 diabetes mellitus: a 23-year cohort study and a meta-analysis of prospective studies. Atherosclerosis. 2015;243:131–7.

    Article  CAS  PubMed  Google Scholar 

  51. Carnethon MR, Sternfeld B, Schreiner PJ, Jacobs DR Jr, Lewis CE, Liu K, Sidney S. Association of 20-year changes in cardiorespiratory fitness with incident type 2 diabetes: the coronary artery risk development in young adults (CARDIA) fitness study. Diabetes Care. 2009;32:1284–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Momma H, Sawada SS, Lee IM, Gando Y, Kawakami R, Terada S, et al. Consistently high level of cardiorespiratory fitness and incidence of type 2 diabetes. Med Sci Sports Exerc. 2017;49:2048–55.

    Article  PubMed  Google Scholar 

  53. Holtermann A, Gyntelberg F, Bauman A, Thorsten Jensen M. Cardiorespiratory fitness, fatness and incident diabetes. Diabetes Res Clin Pract. 2017;134:113–20.

    Article  PubMed  Google Scholar 

  54. Sui X, Hooker SP, Lee IM, Church TS, Colabianchi N, Lee CD, et al. A prospective study of cardiorespiratory fitness and risk of type 2 diabetes in women. Diabetes Care. 2008;31:550–5.

    Article  PubMed  Google Scholar 

  55. Lee DC, Sui X, Lee IM, Church TS, Blair SN. Associations of cardiorespiratory fitness and obesity with risks of impaired fasting glucose and type 2 diabetes in men. Diabetes Care. 2009;32:257–62.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Eriksson KF, Lindgarde F. Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmo feasibility study. Diabetologia. 1991;34:891–8.

    Article  CAS  PubMed  Google Scholar 

  57. Pan XR, Li GW, Hu YH, Wang JX, Yang WY, An ZX, et al. Effects of diet and exercise in preventing NIDDM in people with impaired glucose tolerance. The Da Qing IGT and Diabetes Study. Diabetes Care. 1997;20:537–44.

    Article  CAS  PubMed  Google Scholar 

  58. Gong Q, Gregg EW, Wang J, An Y, Zhang P, Yang W, Li H, et al. Long-term effects of a randomised trial of a 6-year lifestyle intervention in impaired glucose tolerance on diabetes-related microvascular complications: the China Da Qing Diabetes Prevention Outcome Study. Diabetologia. 2011;54:300–7.

    Article  CAS  PubMed  Google Scholar 

  59. Lindström J, Louheranta A, Mannelin M, Rastas M, Salminen V, Eriksson J, et al. The Finnish Diabetes Prevention Study (DPS): lifestyle intervention and 3-year results on diet and physical activity. Diabetes Care. 2003;26:3230–6.

    Article  PubMed  Google Scholar 

  60. Lindström J, Peltonen M, Eriksson JG, Ilanne-Parikka P, Aunola S, Keinänen-Kiukaanniemi S, et al., Finnish Diabetes Prevention Study (DPS). Improved lifestyle and decreased diabetes risk over 13 years: long-term follow-up of the randomised Finnish Diabetes Prevention Study (DPS). Diabetologia. 2013;56:284–93.

    Google Scholar 

  61. Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, Walker EA, Nathan DM. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002;346:393–403.

    Article  CAS  PubMed  Google Scholar 

  62. Knowler WC, Fowler SE, Hamman RF, et al. Diabetes Prevention Program Research Group. 10-year follow-up of diabetes incidence and weight loss in the Diabetes Prevention Program Outcomes Study. Lancet. 2009;374:1677–86.

    Article  PubMed  Google Scholar 

  63. Diabetes Prevention Program Research Group. Long-term effects of lifestyle intervention or metformin on diabetes development and microvascular complications over 15-year follow-up: the Diabetes Prevention Program Outcomes Study. Lancet Diabetes Endocrinol. 2015;3:866–75.

    Article  PubMed Central  CAS  Google Scholar 

  64. Perreault L, Pan Q, Mather KJ, Watson KE, Hamman RF, Kahn SE. Effect of regression from prediabetes to normal glucose regulation on long-term reduction in diabetes risk: results from the Diabetes Prevention Program Outcomes Study. Lancet. 2012;379:2243–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Tuomilehto J, Lindstrom J, Eriksson JG, Valle TT, Hamalainen H, Ilanne-Parikka P, et al. Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. N Engl J Med. 2001;344:1343–50.

    Article  CAS  PubMed  Google Scholar 

  66. Ramachandran A, Snehalatha C, Mary S, Mukesh B, Bhaskar AD, Vijay V, Indian Diabetes Prevention Programme (IDPP). The Indian Diabetes Prevention Programme shows that lifestyle modification and metformin prevent type 2 diabetes in Asian Indian subjects with impaired glucose tolerance (IDPP-1). Diabetologia. 2006;49:289–97.

    Article  CAS  PubMed  Google Scholar 

  67. Malin SK, Braun B. Impact of metformin on exercise-induced metabolic adaptations to lower type 2 diabetes risk. Exerc Sport Sci Rev. 2016;44:4–11.

    Article  PubMed  Google Scholar 

  68. Li G, Zhang P, Wang J, An Y, Gong Q, Gregg EW, et al. Cardiovascular mortality, all-cause mortality, and diabetes incidence after lifestyle intervention for people with impaired glucose tolerance in the Da Qing Diabetes Prevention Study: a 23-year follow-up study. Lancet Diabetes Endocrinol. 2014;2:474–80.

    Article  PubMed  Google Scholar 

  69. McAuley PA, Artero EG, Sui X, Lavie CJ, Almeida MJ, Blair SN. Fitness, fatness, and survival in adults with prediabetes. Diabetes Care. 2014;37:529–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Nylen ES, Ni D, Myers J, Chang M, Plunkett MT, Kokkinos P. Cardiorespiratory fitness impact on all-cause mortality in prediabetic veterans. J Endocrinol Metab. 2015;5:215–9.

    Article  CAS  Google Scholar 

  71. Tikanmäki M, Tammelin T, Vääräsmäki M, Sipola-Leppänen M, Miettola S, Pouta A, et al. Prenatal determinants of physical activity and cardiorespiratory fitness in adolescence – Northern Finland Birth Cohort 1986 study. BMC Public Health. 2017;17:346.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Shepherd E, Gomersall JC, Tieu J, Han S, Crowther CA, Middleton P. Combined diet and exercise interventions for preventing gestational diabetes mellitus. Cochrane Database Syst Rev. 2017;11:CD010443.

    PubMed  Google Scholar 

  73. Wang C, Wei Y, Zhang X, Zhang Y, Xu Q, Sun Y, et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women. Am J Obstet Gynecol. 2017;216:340–51.

    Article  PubMed  Google Scholar 

  74. Koivusalo SB, Rönö K, Klemetti MM, Roine RP, Lindström J, Erkkola M, et al. Gestational diabetes mellitus can be prevented by lifestyle intervention: the Finnish gestational diabetes prevention study (RADIEL): a randomized controlled trial. Diabetes Care. 2016;39:24–30.

    Article  PubMed  Google Scholar 

  75. Schellenberg ES, Dryden DM, Vandermeer B, Ha C, Korownyk C. Lifestyle interventions for patients with and at risk for type 2 diabetes. Ann Intern Med. 2013;159:543–51.

    Article  PubMed  Google Scholar 

  76. Haw JS, Galaviz KI, Straus AN, Kowalski AJ, Magee MJ, Weber MB, et al. Long-term sustainability of diabetes prevention approaches: a systematic review and meta-analysis of randomized clinical trials. JAMA Intern Med. 2017;177:1808. https://doi.org/10.1001/jamainternmed.2017.6040.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bellia A, Rizza S, Lombardo MF, et al. Deterioration of glucose homeostasis in type 2 diabetic patients one year after beginning of statins therapy. Atherosclerosis. 2012;223:197–203.

    Article  CAS  PubMed  Google Scholar 

  78. Carter AA, Gomes T, Camacho X, Juurlink DN, Shah BR, Mamdani MM. Risk of incident diabetes among patients treated with statins: population based study. BMJ. 2013;346:f2610.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Preiss D, Seshasai SR, Welsh P, et al. Risk of incident diabetes with intensive-dose compared with moderate-dose statin therapy: a meta-analysis. JAMA. 2011;305:2556–64.

    Article  CAS  PubMed  Google Scholar 

  80. Kokkinos PF, Faselis C, Myers J, Panagiotakos D, Doumas M. Interactive effects of fitness and statin treatment on mortality risk in veterans with dyslipidaemia: a cohort study. Lancet. 2013;381:394–9.

    Article  CAS  PubMed  Google Scholar 

  81. Nylen ES, Faselis C, Kheirbek R, Myers J, Panagiotakos D, Kokkinos P. Statins modulate the mortality risk associated with obesity and cardiorespiratory fitness in diabetics. J Clin Endocrinol Metab. 2013;98:3394–401.

    Article  CAS  PubMed  Google Scholar 

  82. Mikus CR, Boyle LJ, Borengasser SJ, et al. Simvastatin impairs exercise training adaptations. J Am Coll Cardiol. 2013;62:709–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Muraki A, Miyashita K, Mitsuishi M, Tamaki M, Tanaka K, Itoh H. Coenzyme Q10 reverses mitochondrial dysfunction in atorvastatin-treated mice and increases exercise endurance. J Appl Physiol. 2012;113:479–86.

    Article  CAS  PubMed  Google Scholar 

  84. Thompson PD, Panza G, Zaleski A, Taylor B. Statin-associated side effects. J Am Coll Cardiol. 2016;67:2395–410.

    Article  CAS  PubMed  Google Scholar 

  85. Franklin BA, Lavie CJ. Impact of statins on physical activity and fitness: ally or adversary? Mayo Clin Proc. 2015;90:1314–9.

    Article  PubMed  Google Scholar 

  86. Williams PT, Thompson PD. Effects of statin therapy on exercise levels in participants in the National Runners’ and Walkers’ health study. Mayo Clin Proc. 2015;90:1338–47.

    Article  CAS  PubMed  Google Scholar 

  87. Kokkinos P, Faselis C, Narayan P, Myers J, Nylen E, Sui X, et al. Cardiorespiratory fitness and incidence of type 2 diabetes in United States veterans on statin therapy. Am J Med. 2017;130:1192–8.

    Article  PubMed  Google Scholar 

  88. Praet SF, van Loon LJ. Exercise therapy in type 2 diabetes. Acta Diabetol. 2009;46:263–78.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Haffner SM, Lehto S, Ronnemaa T, Pyoala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in non-diabetic subjects with and without prior myocardial infarction. N Engl J Med. 1998;339:229–34.

    Article  CAS  PubMed  Google Scholar 

  90. Church TS, Cheng YJ, Earnest CP, Barlow CE, Gibbons LW, et al. Exercise capacity and body composition as predictors of mortality among men with diabetes. Diabetes Care. 2004;27:83–8.

    Article  PubMed  Google Scholar 

  91. McAuley PA, Myers JN, Abella JP, Tan SY, Froelicher VF. Exercise capacity and body mass as predictors of mortality among male veterans with type 2 diabetes. Diabetes Care. 2007;30:1539–43.

    Article  PubMed  Google Scholar 

  92. Kokkinos P, Myers J, Nylen E, Panagiotakos DB, Manolis A, Pittaras A, et al. Exercise capacity and all-cause mortality in African American and Caucasian men with type 2 diabetes. Diabetes Care. 2009;32:623–8.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Nylen ES, Kokkinos P, Myers J, Faselis C. Prognostic effect of exercise capacity on mortality in older adults with diabetes mellitus. J Am Geriatr Soc. 2010;58:1850–4.

    Article  PubMed  Google Scholar 

  94. Schneider SH, Amorosa LF, Khachadurian AK, Ruderman NB. Studies on the mechanism of improved glucose control during regular exercise in type 2 (non-insulin-dependent) diabetes. Diabetologia. 1984;26:355.

    Article  CAS  PubMed  Google Scholar 

  95. Mayer-Davis EJ, D'Agostino R Jr, Karter AJ, Haffner SM, Rewers MJ, Saad M, Bergman RN. Intensity and amount of physical activity in relation to insulin sensitivity: the Insulin Resistance Atherosclerosis Study. JAMA. 1998;279:669–74.

    Article  CAS  PubMed  Google Scholar 

  96. Boule NG, Haddad E, Kenny GP, Wells GA, Sigal RJ. Effects of exercise on glycemic control and body mass in type 2 diabetes mellitus; a meta-analysis of controlled clinical trials. JAMA. 2001;286:1218–27.

    Article  CAS  PubMed  Google Scholar 

  97. Winnick JJ. Short-term aerobic exercise training in obese humans with type 2 diabetes mellitus improves whole-body insulin sensitivity through gains in peripheral, not hepatic insulin sensitivity. J Clin Endocrinol Metab. 2008;93:771–8.

    Article  CAS  PubMed  Google Scholar 

  98. Boule NG, Kenny GP, Haddad E, Wells GA, Sigal RJ. Meta-analysis of the effects of structured exercise training on cardiorespiratory fitness in type 2 diabetes mellitus. Diabetologia. 2003;46:1071–81.

    Article  CAS  PubMed  Google Scholar 

  99. The Look AHEAD Research Group. Cardiovascular effects of intensive lifestyle intervention in type 2 diabetes. New Engl J Med. 2013;369:145–54.

    Article  CAS  Google Scholar 

  100. Look AHEAD Research Group, Gregg EW, Jakicic JM, Blackburn G, Bloomquist P, Bray GA, Clark JM, et al. Association of the magnitude of weight loss and changes in physical fitness with long-term cardiovascular disease outcomes in overweight or obese people with type 2 diabetes: a post-hoc analysis of the Look AHEAD randomised clinical trial. Lancet Diabetes Endocrinol. 2016;4:913–21.

    Article  Google Scholar 

  101. Jakicic JM, Jaramillo SA, Balasubramanyam A, Bancroft B, Curtis JM, Mathews A, Pereira M, Regensteiner JG, Ribisl PM, Look AHEAD Study Group. Effect of a lifestyle intervention on change in cardiorespiratory fitness in adults with type 2 diabetes: results from the Look AHEAD Study. Int J Obes. 2009;33:305–16.

    Article  CAS  Google Scholar 

  102. Kokkinos P, Faselis C, Myers J, Sui X, Zhang J, Blair SN. Age-specific exercise capacity threshold for mortality risk assessment in male veterans. Circulation. 2014;130:653–8.

    Article  PubMed  Google Scholar 

  103. Jakicic JM, Egan CM, Fabricatore AN, Gaussoin SA, Glasser SP, Hesson LA, Knowler WC, Lang W, et al. Four-year change in cardiorespiratory fitness and influence on glycemic control in adults with type 2 diabetes in a randomized trial: the Look AHEAD Trial. Diabetes Care. 2013;36:1297–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Kerns JC, Guo J, Fothergill E, Howard L, Knuth ND, Brychta R, Chen KY, Skarulis MC, Walter PJ, Hall KD. Increased physical activity associated with less weight regain six years after “the biggest loser” competition. Obesity (Silver Spring). 2017;25:1838–43.

    Article  Google Scholar 

  105. Johansen MY, MacDonald CS, Hansen KB, Karstoft K, Christensen R, Pedersen M, et al. Effect of an intensive lifestyle intervention on glycemic control in patients with type 2 diabetes a randomized clinical trial. JAMA. 2017;318:637–46.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Jang HC. Sarcopenia, frailty, and diabetes in older adults. Diabetes Metab J. 2016;40:182–9.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Vandervoort AA. Aging of the human neuromuscular system. Muscle Nerve. 2002;25:17–25.

    Article  CAS  PubMed  Google Scholar 

  108. Park SW, Goodpaster BH, Strotmeyer ES, et al. Decreased muscle strength and quality in older adults with type 2 diabetes: the health, aging, and body composition study. Diabetes. 2006;55:1813–8.

    Article  CAS  PubMed  Google Scholar 

  109. Seok WP, Goodpaster BH, Jung SL, et al. Excessive loss of skeletal muscle mass in older adults with type 2 diabetes. Diabetes Care. 2009;32:1993–7.

    Article  Google Scholar 

  110. Womack L, Peters D, Barrett EJ, Kaul S, Price W, Lindner JR. Abnormal skeletal muscle capillary recruitment during exercise in patients with type 2 diabetes mellitus and microvascular complications. J Am Coll Cardiol. 2009;53:2175–83.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hovanec N, Sawant A, Overend TJ, Petrella RJ, Vandervoort AA. Resistance training and older adults with type 2 diabetes mellitus: strength of the evidence. J Aging Res. 2012;2012:284635.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Castaneda C, Layne JE, Munoz-Orians L, Gordon PL, Walsmith J, Foldvari M, Roubenoff R, Tucker KL, Nelson ME. A randomized controlled trial of resistance exercise training to improve glycemic control in older adults with type 2 diabetes. Diabetes Care. 2002;25:2335–41.

    Article  PubMed  Google Scholar 

  113. Brooks N, Layne JE, Gordon PL, Roubenoff R, Nelson ME, Castaneda-Sceppa C. Strength training improves muscle quality and insulin sensitivity in Hispanic older adults with type 2 diabetes. Int J Med Sci. 2007;4:19–27.

    Article  CAS  Google Scholar 

  114. Dunstan DW, Daly RM, Owen N. High-intensity resistance training improves glycemic control in older patients with type 2 diabetes. Diabetes Care. 2002;25:1729–36.

    Article  PubMed  Google Scholar 

  115. Pesta DH, Goncalves RLS, Madiraju AK, Strasser B, Sparks LM. Resistance training to improve type 2 diabetes: working toward a prescription for the future. Nutr Metab. 2017;14:24. https://doi.org/10.1186/s12986-017-0173-7.

    Article  Google Scholar 

  116. Sigal RJ, Kenny GP, Boulé NG, Wells GA, Prud'homme D, Fortier M, et al. Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes: a randomized trial. Ann Intern Med. 2007;147:357–69.

    Article  PubMed  Google Scholar 

  117. Church TS, Blair SN, Cocreham S, Johannsen N, Johnson W, Kramer K, et al. Effects of aerobic and resistance training on hemoglobin a1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA. 2010;304:2253–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. American Diabetes Association. 4. Lifestyle management. Diabetes Care. 2017;40(suppl1):s33–43.

    Article  Google Scholar 

  119. Aguiar EJ, Morgan PJ, Collins CE, Plotnikoff RC, Callister R. Efficacy of interventions that include diet, aerobic and resistance training components for type 2 diabetes prevention: a systematic review with meta-analysis. Int J Behav Nutr Phys Act. 2014;11:2. https://doi.org/10.1186/1479-5868-11-2.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Dempsey PC, Larsen RN, Sethi P, Sacre JW, Straznicky NE, Cohen ND, et al. Benefits for Type 2 diabetes of interrupting prolonged sitting with brief bouts of light walking or simple resistance activities. Diabetes Care. 2016;39:964–72.

    Article  CAS  PubMed  Google Scholar 

  121. Winding KM, Munch GW, Iepsen UW, Van Hall G, Pedersen BK, Mortensen SP. The effect of low-volume high-intensity interval training versus endurance training on glycemic control in individuals with type 2 diabetes. Diabetes Obes Metab. 2017;20:1131. https://doi.org/10.1111/dom.13198.

    Article  CAS  Google Scholar 

  122. Jelleyman C, Yates T, O’Donovan G, Gray LJ, King JA, Khunti J, Davies MJ. The effect of high intensity interval training on glucose regulation and insulin resistance; a meta analysis. Obes Rev. 2015;16:942–61.

    Article  CAS  PubMed  Google Scholar 

  123. Stephens NA, Sparks LM. Resistance to the beneficial effects of exercise in type 2 diabetes: are some individuals programmed to fail? J Clin Endocrinol Metab. 2015;100:43.

    Article  CAS  PubMed  Google Scholar 

  124. Williams CJ, Williams MG, Eynon N, Ashton KJ, Little JP, Wisloff U, Coombes JS. Genes to predict VO2max trainability: a systematic review. BMC Genomics. 2017;18(Suppl 8):831. https://doi.org/10.1186/s12864-017-4192-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Sattar N, Preiss D, Murray HM, Welsh P, Buckley BM, de Craen AJ, et al. Statins and risk of incident diabetes: a collaborative meta-analysis of randomised statin trials. Lancet. 2010;375:735–42.

    Article  CAS  PubMed  Google Scholar 

  126. Allard NAE, Schirris TJJ, Verheggen RJ, Russel FGM, Rodenburg RJ, Smeitink JAM, et al. Statins affect skeletal muscle performance: evidence for disturbances in energy metabolism. J Clin Endocrinol Metab. 2018;103:75–84.

    Article  PubMed  Google Scholar 

  127. Bahls M, Groß S, Ittermann T, Busch R, Gläser S, Ewert R, et al. Statins are related to impaired exercise capacity in males but not females. PLoS One. 2017;12(6):e0179534.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Nylén ES, Faselis C, Kheirbek R, Myers J, Panagiotakos D, Kokkinos P. Statins modulate the mortality risk associated with obesity and cardiorespiratory fitness in diabetics. J Clin Endocrinol Metab. 2013;98:3394–401.

    Article  PubMed  CAS  Google Scholar 

  129. Kelley DE, He J, Menshikova EV, Ritov VB. Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes. 2002;51:2944–50.

    Article  CAS  PubMed  Google Scholar 

  130. Radice M, Rocca A, Bedon E, Musacchio N, Morabito A, Segalini G. Abnormal response to exercise in middle-aged NIDDM patients with and without autonomic neuropathy. Diabet Med. 1996;13:259–65.

    Article  CAS  PubMed  Google Scholar 

  131. Joshi D, Shiwalkar A, Cross MR, Sharma SK, Vachhani A, Dutt C. Continuous, non-invasive measurement of the haemodynamic response to submaximal exercise in patients with diabetes mellitus: evidence of impaired cardiac reserve and peripheral vascular response. Heart. 2010;96:36–41.

    Article  CAS  PubMed  Google Scholar 

  132. Mendes R, Sousa N, Reis VM, Themudo-Barata JL. Prevention of exercise-related injuries and adverse events in patients with type 2 diabetes. Postgrad Med J. 2013;89(1058):715–21.

    Article  PubMed  Google Scholar 

  133. Courties A, Sellam J. Osteoarthritis and type 2 diabetes mellitus: what are the links? Diabetes Res Clin Pract. 2016;122:198–206.

    Article  CAS  PubMed  Google Scholar 

  134. Mortuza R, Chakrabarti S. Glucose-induced cell signalling in the pathogenesis of diabetic cardiomyopathy. Heart Fail Rev. 2014;19:75–86.

    Article  CAS  PubMed  Google Scholar 

  135. Jia G, DeMarco VG, Sowers JR. Insulin resistance and hyperinsulinaemia in diabetic cardiomyopathy. Nat Rev Endocrinol. 2016;12:144–53.

    Article  CAS  PubMed  Google Scholar 

  136. Wong CY, O’Moore-Sullivan T, Leano R, Byrne BE, Marwick TH. Alterations of left ventricular myocardial characteristics associated with obesity. Circulation. 2004;110:3081–7.

    Article  PubMed  Google Scholar 

  137. Jewiss D, Ostman C, King N, Smart NA. Clinical outcomes to exercise training in type 1 diabetes: a systematic review and meta-analysis. Diabetes Res Clin Pract. 2017. https://doi.org/10.1016/j.diabres.2017.11.036.

  138. Morris JN, Heady JA, Raffle PA, Roberts CG, Parks JW. Coronary heart-disease and physical activity of work. Lancet. 1953;265:1053–7.

    Article  CAS  Google Scholar 

  139. Hoffman NJ, Parker BL, Chaudhuri R, Fisher-Wellman KH, Kleinert M, et al. Global phosphoproteomic analysis of human skeletal muscle reveals a network of exercise-regulated kinases and AMPK substrates. Cell Metab. 2015;22:922–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Sparks LM. Exercise training response heterogeneity: physiological and molecular insights. Diabetologia. 2017;60:2329–36.

    Article  PubMed  Google Scholar 

  141. https://commonfund.nih.gov/MolecularTransducers.

  142. Ross R, Blair SN, Arena R, Church TS, Després JP, et al., American Heart Association Physical Activity Committee of the Council on Lifestyle and Cardiometabolic Health; Council on Clinical Cardiology; Council on Epidemiology and Prevention; Council on Cardiovascular and Stroke Nursing; Council on Functional Genomics and Translational Biology; Stroke Council. Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the American Heart Association. Circulation. 2016;134(13):e653–99.

    Google Scholar 

  143. Sinharay R, Gong J, Barratt B, Ohman-Strickland P, Ernst S, Kelly F, et al. Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet. 2018;391:339–49.

    Article  PubMed  PubMed Central  Google Scholar 

  144. American Diabetes Association. Economic costs of diabetes in the U.S. in 2017. Diabetes Care. 2018. https://doi.org/10.2337/dci18-0007.

  145. Myers J, Doom R, King R, Fonda H, Chan K, Kokkinos P, Rehkopf DH. Association between cardiorespiratory fitness and health care costs: the veterans exercise testing study. Mayo Clin Proc. 2018;93(1):48–55. https://doi.org/10.1016/j.mayocp.2017.09.019.

    Article  PubMed  Google Scholar 

  146. Wahl MP, Scalzo RL, Regensteiner JG, Reusch JEB. Mechanisms of aerobic exercise impairment in diabetes: a narrative review. Front Endocrinol. 2018;9:181. https://doi.org/10.3389/fendo.2018.00181.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Kokkinos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nylén, E.S., Kokkinos, P. (2019). Physical Activity, Cardiorespiratory Fitness, and the Diabetes Spectrum. In: Kokkinos, P., Narayan, P. (eds) Cardiorespiratory Fitness in Cardiometabolic Diseases. Springer, Cham. https://doi.org/10.1007/978-3-030-04816-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04816-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04815-0

  • Online ISBN: 978-3-030-04816-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics