Abstract
Schottky lead sulfide (PbS) quantum dot (QD) solar cells (SCs) have the advantage of simple device fabrication while pn heterojunction SCs benefit from efficient carrier extraction induced by a front depletion region. Herein, we used low-work function transparent conducting oxide (L-TCO) to create a front contact with p-type PbS QD layer. The configuration, denoted as inverted Schottky, combines the mentioned advantages of Schottky and pn structures. A series of inverted Schottky cells having a structure of L-TCO/p-PbS QDs/MoOx/Au-Ag and normal Schottky cells with a structure of ITO/p-PbS QD/Li-Al were fabricated for comparison. Current - voltage measurements showed that as the thickness of p-PbS QD layer increased the power conversion efficiency (PCE) of normal cells maximized at 160 nm while PCE of inverted cells reached a plateau. The observed plateau in inverted Schottky cells can reduce the technical difficulty in maintaining the thickness of PbS QD layer.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Luther, J.M., Law, M., Beard, M.C., Song, Q., Reese, M.O., Ellingson, R.J., Nozik, A.J.: Schottky solar cells based on colloidal nanocrystal films. Nano Lett. 8, 3488–3492 (2008)
Pradhan, S., Stavrinadis, A., Gupta, S., Christodoulou, S., Konstantatos, G.: Breaking the open-circuit voltage deficit floor in pbs quantum dot solar cells through synergistic ligand and architecture engineering. ACS Energy Lett. 2(6), 1444–1449 (2017)
Mai, X., An, J., Song, H., Jang, J.: Inverted schottky quantum dot solar cells with enhanced carrier extraction and air-stability. J. Mater. Chem. A 2, 20799–20805 (2014)
Barkhouse, D.A.R., Kramer, I.J., Wang, X., Sargent, E.H.: Dead zones in colloidal quantum dot photovoltaics: evidence and implications. Opt. Express 18, 451–457 (2010)
Kemp, K.W., Wong, C.T.O., Hoogland, S.H., Sargent, E.H.: Photocurrent extraction efficiency in colloidal quantum dot photovoltaics. Appl. Phys. Lett. 103, 211101 (2013)
Ning, Z., Voznyy, O., Pan, J., Hoogland, S., Adinolfi, V., Xu, J., Li, M., Kirmani, A.R., Sun, J.P., Minor, J., Kemp, K.W., Dong, H., Rollny, L., Labelle, A., Carey, G., Sutherland, B., Hill, I., Amassian, A., Liu, H., Tang, J., Bakr, O.M., Sargent, E.H.: Air-stable n-type colloidal quantum dot solids. Nat. Mater. 13, 822–828 (2014)
Jo, J.W., Kim, Y., Choi, J., de Arquer, F.P.G., Walters, G., Sun, B., Ouellette, O., Kim, J., Proppe, A.H., Quintero-Bermudez, R., Fan, J., Xu, J., Tan, C.S., Voznyy, O., Sargent, E.H.: Enhanced open-circuit voltage in colloidal quantum dot photovoltaics via reactivity-controlled solution-phase ligand exchange. Adv. Mater. 29, 1–6 (2017)
Balazs, D.M., Rizkia, N., Fang, H.H., Dirin, D.N., Momand, J., Kooi, B.J., Kovalenko, M.V., Loi, M.A.: Colloidal Quantum Dot Inks For Single-Step-Fabricated Field-Effect Transistors: The Importance Of Postdeposition Ligand Removal. ACS Appl. Mater. Interfaces. 10, 5626–5632 (2018)
Lu, K., Wang, Y., Liu, Z., Han, L., Shi, G., Fang, H., Chen, J., Ye, X., Chen, S., Yang, F., Shulga, A.G., Wu, T., Gu, M., Zhou, S., Fan, J., Loi, M.A., Ma, W.: High-efficiency PbS quantum-dot solar cells with greatly simplified fabrication processing via “Solvent-Curing”. Adv. Mater. 1707572, 1–9 (2018)
Woo, J.Y., Ko, J., Song, J.H., Kim, K., Choi, H., Kim, Y., Lee, D.C., Jeong, S., Song, H.: Ultra-Stable PbSe nanocrystal quantum dots via in-situ ultra-stable PbSe nanocrystal quantum dots via in-situ formation of atomically-thin halide Adlayers on PbSe (100)). J. Am. Chem. Soc. 136(25), 8883–8886 (2014)
Tang, J., Kemp, K.W., Hoogland, S., Jeong, K.S., Liu, H., Levina, L., Furukawa, M., Wang, X., Debnath, R., Cha, D., Chou, K.W., Fischer, A., Amassian, A., Asbury, J.B., Sargent, E.H.: Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nat. Mater. 10, 765–771 (2011)
Brown, P.R., Kim, D., Lunt, R.R., Zhao, N., Bawendi, M.G., Grossman, J.C., Bulovi, V.: Energy level modification in lead sulfide quantum dot thin films through ligand exchange. ACS Nano 8, 1–17 (2014)
Zhitomirsky, D., Voznyy, O., Levina, L., Hoogland, S., Kemp, K.W., Ip, A.H., Thon, S.M., Sargent, E.H.: Engineering colloidal quantum dot solids within and beyond the mobility invariant regime. Nat. Commun. 5, 1–7 (2014)
Acknowledgement
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 103.99-2016.32
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Switzerland AG
About this paper
Cite this paper
Mai, V.T., Duong, N.H., Mai, XD. (2019). The Efficiency Reaches a Plateau in Inverted Schottky Quantum Dot Solar Cells. In: Fujita, H., Nguyen, D., Vu, N., Banh, T., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2018. Lecture Notes in Networks and Systems, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-04792-4_73
Download citation
DOI: https://doi.org/10.1007/978-3-030-04792-4_73
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04791-7
Online ISBN: 978-3-030-04792-4
eBook Packages: EngineeringEngineering (R0)