Skip to main content

A Comparison of Various Approaches to Reinforcement Learning Algorithms for Multi-robot Box Pushing

  • Conference paper
  • First Online:
Advances in Engineering Research and Application (ICERA 2018)

Part of the book series: Lecture Notes in Networks and Systems ((LNNS,volume 63))

Included in the following conference series:

Abstract

In this paper, a comparison of reinforcement learning algorithms and their performance on a robot box pushing task is provided. The robot box pushing problem is structured as both a single agent problem and also a multi-agent problem. A Q-learning algorithm is applied to the single-agent box pushing problem, and three different Q-learning algorithms are applied to the multi-agent box pushing problem. Both sets of algorithms are applied on a dynamic environment that is comprised of static objects, a static goal location, a dynamic box location, and dynamic agent positions. A simulation environment is developed to test the four algorithms, and their performance is compared through graphical explanations of test results. The comparison shows that the newly applied reinforcement algorithm out-performs the previously applied algorithms on the robot box pushing problem in a dynamic environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chakraborty, J., Konar, A., Nagar, A., Das, S.: Rotation and translation selective pareto optimal solution to the box-pushing problem by mobile robots using NSGA-II. In: 2009 IEEE Congress on Evolutionary Computation, pp. 2120–2126, May 2009. https://doi.org/10.1109/CEC.2009.4983203

  2. Hwang, K.S., Ling, J.L., Wang, W.H.: Adaptive reinforcement learning in box-pushing robots. In: 2014 IEEE International Conference on Automation Science and Engineering (CASE), pp. 1182–1187, August 2014. https://doi.org/10.1109/CoASE.2014.6899476

  3. La, H.M., Lim, R., Sheng, W.: Multirobot cooperative learning for predator avoidance. IEEE Trans. Control Syst. Technol. 23(1), 52–63 (2015). https://doi.org/10.1109/TCST.2014.2312392

    Article  Google Scholar 

  4. La, H.M., Lim, R.S., Sheng, W., Chen, J.: Cooperative flocking and learning in multi-robot systems for predator avoidance. In: 2013 IEEE International Conference on Cyber Technology in Automation, Control and Intelligent Systems, pp. 337–342, May 2013. https://doi.org/10.1109/CYBER.2013.6705469

  5. Parra-Gonzalez, E.F., Ramirez-Torres, J.G., Toscano-Pulido, G.: A new object path planner for the box pushing problem. In: 2009 Electronics, Robotics and Automotive Mechanics Conference (CERMA), pp. 119–124, September 2009. https://doi.org/10.1109/CERMA.2009.54

  6. Rakshit, P., Konar, A., Nagar, A.K.: Multi-robot box-pushing in presence of measurement noise. In: 2016 IEEE Congress on Evolutionary Computation (CEC), pp. 4926–4933, July 2016. https://doi.org/10.1109/CEC.2016.7744422

  7. Wang, Y., Silva, C.W.D.: Multi-robot box-pushing: Single-agent q-learning vs. team q-learning. In: 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3694–3699, October 2006. https://doi.org/10.1109/IROS.2006.281729

  8. Wang, Y., de Silva, C.W.: An object transportation system with multiple robots and machine learning. In: Proceedings of the 2005, American Control Conference, vol. 2, pp. 1371–1376, June 2005. https://doi.org/10.1109/ACC.2005.1470156

  9. Yasuda, T., Ohkura, K., Yamada, K.: Multi-robot cooperation based on continuous reinforcement learning with two state space representations. In: 2013 IEEE International Conference on Systems, Man, and Cybernetics, p. 4475, October 2013. https://doi.org/10.1109/SMC.2013.760

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hung Manh La .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rahimi, M., Gibb, S., Shen, Y., La, H.M. (2019). A Comparison of Various Approaches to Reinforcement Learning Algorithms for Multi-robot Box Pushing. In: Fujita, H., Nguyen, D., Vu, N., Banh, T., Puta, H. (eds) Advances in Engineering Research and Application. ICERA 2018. Lecture Notes in Networks and Systems, vol 63. Springer, Cham. https://doi.org/10.1007/978-3-030-04792-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04792-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04791-7

  • Online ISBN: 978-3-030-04792-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics