Abstract
Data mutates dynamically, and these transmutations are so diverse that it affects the quality and reliability of the model. Concept Drift is the quandary of such dynamic cognitions and modifications in the data stream which leads to change in the behaviour of the model. The problem of concept drift affects the prognostication quality of the software and thus reduces its precision. In most of the drift detection methods, it is followed that there are given labels for the incipient data sample which however is not practically possible. In this paper, the performance and accuracy of the proposed concept drift detection technique for the classification of streaming data with undefined labels will be tested. Testing is followed with the creation of the centroid classification model by utilizing some training examples with defined labels and test its precision with the test set and then compare the accuracy of the prediction model with and without the proposed concept drift detection technique.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
ZliobaitÄ—, I.: Learning under concept drift: an overview. Technical report faculty of mathematics and informatics, Vilnius University, Vilnius, Lithuania (2009)
Khan, L.: Data stream mining: challenges and techniques. In: Proceedings of 22nd IEEE International Conference on Tools with Artificial Intelligence (2010)
Krempl, G., et al.: Open challenges for data stream mining research. SIGKDD Explor. Newsl. 16(1), 1–10 (2014). https://doi.org/10.1145/2674026.2674028
Janardan, Mehta, S.: Concept drift in streaming data classification: algorithms, platforms, and issues. Procedia Comput. Sci. 122, 804–811 (2017)
Wang, H., Abraham, Z.: Concept drift detection for streaming data. In: Proceedings of International Joint Conference of Neural Networks (IJCNN), Killarney, Ireland, pp. 1–9 (2015)
Kim, Y.I., Park, C.H.: Concept drift detection on streaming data under limited labeling. In: 2016 IEEE International Conference on Computer and Information Technology (CIT), pp. 273–280. IEEE (2016)
Nishida, K., Yamauchi, K.: Detecting concept drift using statistical testing. In: Corruble, V., Takeda, M., Suzuki, E. (eds.) DS 2007. LNCS (LNAI), vol. 4755, pp. 264–269. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75488-6_27
Kadwe, Y., Suryawanshi, V.: A review on concept drift. IOSR J. Comput. Eng. 17, 20–26 (2015). https://doi.org/10.9790/0661-17122026
Shlens, J.: A Tutorial on Principal Component Analysis, Systems Neurobiology Laboratory, Salk Institute for Biological StudiesLa Jolla, CA 92037 and Institute for Nonlinear Science, University of California, San Diego La Jolla, CA 92093-0402, 10 December 2005. Version 2
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Punn, N.S., Agarwal, S. (2018). Testing Concept Drift Detection Technique on Data Stream. In: Mondal, A., Gupta, H., Srivastava, J., Reddy, P., Somayajulu, D. (eds) Big Data Analytics. BDA 2018. Lecture Notes in Computer Science(), vol 11297. Springer, Cham. https://doi.org/10.1007/978-3-030-04780-1_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-04780-1_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-04779-5
Online ISBN: 978-3-030-04780-1
eBook Packages: Computer ScienceComputer Science (R0)