Skip to main content

Rhythms in Early Development

  • Chapter
  • First Online:
Early Interaction and Developmental Psychopathology

Abstract

Rhythms will be considered, here as in the sense of the isochrone recurrence of a same event. In the environment as well as in physiology and behavior, rhythms are omnipresent. Their periodicity covers different time scales. Thus, they have an impact on the lives of living beings. Since the perinatal period, the brain structures that make it possible to perceive the circadian rhythms are set up in utero and go on to mature during the peripartum. Nevertheless, the infant is progressively quickly becomes able to synchronize its physiological rhythms on the alternation day-night rhythm. Social rhythms play an important role in the development of this physiological synchronization as well as in the development of social interactions. Moreover, motor rhythms are spontaneously present in the infant’s movements and actions, underlining the existence of an internal tempo. This, conversely, allows the infant to adapt to the rhythms of its environment. Rhythmicity is thus a fundamental component of the quality of the social interactions. This explains why parental and cultural practices place rhythmicity at the center of the parent-infant relationship. It is also why when these rhythmic distortions arise due to maternal and/or infant clinical reasons the impact on parent-infant relationship is not negligible and must be seriously acknowledged and addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Oxytocin is a hormone produced in the hypothalamus that regulates homeostasis, thermoregulation, etc.

  2. 2.

    The acrophase is the position on the time axis of the maximum variation in a temporal biological rhythm.

  3. 3.

    For details on the assessment of sleep states in infants, see Grigg-Damberger and Gozal [46]; for a recent review on the quality and quantity of sleep from 0 to 12 years, see Galland et al. [47].

  4. 4.

    It has been shown in animals that the fetal olfactory system works better in the aquatic environment than in air [52].

  5. 5.

    There are six types of attentional commitment: uncommitted, look, commitment to the person, commitment to the object, passive joint commitment, and coordinated joint commitment [53, 59].

  6. 6.

    Note that in adults, rhythmic movements are sometimes still present at the time of falling asleep [64].

  7. 7.

    Soon after birth, infants can detect the synchrony between events in different sensory modalities [39, 72].

  8. 8.

    0.5 lux, full moonlight; 10 lux, dusk or candlelight; 20–80 lux, lit city; 100 lux, minimum brightness to read a text; 100–200 lux, home lighting; 300–500 lux, public places; 1000 lux, very well-lit place; 5000 lux, outside when overcast; 10,000 lux, outside in average weather; 20,000 lux, intense artificial light (right next to a 50 W halogen lamp); 50,000–100,000 lux, outside in sunny weather (Source http://www.sirtin.fr/2008/05/28/comment-mesurer-leclairage/).

  9. 9.

    All infants studied were breastfeeding on demand (in two groups).

  10. 10.

    Laboratory bed-sharing practices: they sleep less deep sleep (NREM3-4) and more light sleep (NREM1-2).

  11. 11.

    14 days from the 10th day of life after term birth.

References

  1. Roenneberg T, Kuehnle T, Juda M, Kantermann T, Allebrandt K, Gordijn M, Merrow M (2007) Epidemiology of the human circadian clock. Sleep Med Rev 11(6):429–438. https://doi.org/10.1016/j.smrv.2007.07.005

    Article  PubMed  Google Scholar 

  2. Simpkin CT, Jenni OG, Carskadon MA, Wright KPJ, Akacem LD, Garlo KG, LeBourgeois MK (2014) Chronotype is associated with the timing of the circadian clock and sleep in toddlers. J Sleep Res 23(4):397–405. https://doi.org/10.1111/jsr.12142

    Article  PubMed  PubMed Central  Google Scholar 

  3. Serón-Ferré M, Torres-Farfan C, Forcelledo ML, Valenzuela GJ (2001) The development of circadian rhythms in the fetus and neonate. Semin Perinatol (6):363–370

    Article  Google Scholar 

  4. Reppert SM, Weaver D, Rivkees SA, Stopa E (1988) Putative melatonin receptors in a human biological clock. Science 242(4875):78–81. https://doi.org/10.1126/science.2845576

    Article  CAS  PubMed  Google Scholar 

  5. Tsai S-Y, Thomas KA, Lentz MJ, Barnard KE (2012) Light is beneficial for infant circadian entrainment: an actigraphic study. J Adv Nurs 68(8):1738–1747. https://doi.org/10.1111/j.1365-2648.2011.05857.x

    Article  PubMed  Google Scholar 

  6. Mirmiran M, Kok JH, Boer K, Wolf H (1992) Perinatal development of human circadian rhythms: role of the foetal biological clock. Neurosci Biobehav Rev 16(3):371–378. https://doi.org/10.1016/S0149-7634(05)80207-6

    Article  CAS  PubMed  Google Scholar 

  7. Korte J, Hoehn T, Siegmund R (2004) Actigraphic recordings of activity-rest rhythms of neonates born by different delivery modes. Chronobiol Int 21(1):95–106

    Article  Google Scholar 

  8. McGraw K, Hoffmann R, Harker C, Herman JH (1999) The development of circadian rhythms in a human infant. Sleep 22(3):303–310. https://frodon.univ-paris5.fr/url?http://search.ebscohost.com/login.aspx?direct=true&db=psyh&AN=1999-05089-003&lang=fr&site=ehost-live

    Article  CAS  Google Scholar 

  9. Mirmiran M, Ariagno RL (2000) Influence of light in the NICU on the development of circadian rhythms in preterm infants. Semin Perinatol 24(4):247–257

    Article  CAS  Google Scholar 

  10. Germain AM, Valenzuela GJ, Ivankovic M, Ducsay CA, Gabella C, Serón-Ferré M (1993) Relationship of circadian rhythms of uterine activity with term and preterm delivery. Am J Obstet Gynecol 168(4):1271–1277. https://doi.org/10.1016/0002-9378(93)90379-W

    Article  CAS  PubMed  Google Scholar 

  11. Feldman R (2015) Sensitive periods in human social development: new insights from research on oxytocin, synchrony, and high-risk parenting. Dev Psychopathol 27(2):369–395. http://journals.cambridge.org/abstract_S0954579415000048

    Article  Google Scholar 

  12. Warren WS, Cassone VM (1995) The pineal gland: photoreception and coupling of behavioral, metabolic, and cardiovascular circadian outputs. J Biol Rhythm 10(1):64–79. https://doi.org/10.1177/074873049501000106

    Article  CAS  Google Scholar 

  13. Burnham MM (2007) The ontogeny of diurnal rhythmicity in bed-sharing and solitary-sleeping infants: a preliminary report. Infant Child Dev 16(4):341–357

    Article  Google Scholar 

  14. Kennaway DJ (2000) Melatonin and development: physiology and pharmacology. Semin Perinatol 24(4):258–266. https://doi.org/10.1053/sper.2000.8594

    Article  CAS  PubMed  Google Scholar 

  15. Ivars K, Nelson N, Theodorsson A, Theodorsson E, Ström JO, Mörelius E (2015) Development of salivary cortisol circadian rhythm and reference intervals in full-term infants. PLoS One 10(6):e0129502. https://doi.org/10.1371/journal.pone.0129502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Guilleminault C, Leger D, Pelayo R, Gould S, Hayes B, Miles L (1996) Development of circadian rhythmicity of temperature in full-term normal infants. Neurophysiol Clin 26(1):21–29

    Article  CAS  Google Scholar 

  17. de Vries JIP, Visser GHA, Prechtl HFR (1982) The emergence of fetal behaviour. I. Qualitative aspects. Early Hum Dev 7(4):301–322. https://doi.org/10.1016/0378-3782(82)90033-0

    Article  PubMed  Google Scholar 

  18. de Vries JIP, Visser GHA (1987) Diurnal and other variations in fetal movement and heart rate patterns at 20–22 weeks. Early Hum Dev 15(6):333–348. http://www.sciencedirect.com/science/article/pii/0378378287900296

    Article  Google Scholar 

  19. Watanabe K, Iwase K, Hara K (1973) Visual evoked responses during sleep and wakefulness in pre-term infants. Electroencephalogr Clin Neurophysiol 34(6):571–577

    Article  CAS  Google Scholar 

  20. Porges S (1994) Le tonus vagal: indicateur du stress et de la vulnérabilité au stress chez l’enfant. Médecine & Enfance, octobre, 494

    Google Scholar 

  21. Van Puyvelde M, Loots G, Meys J, Neyt X, Mairesse O, Simcock D, Pattyn N (2015) Whose clock makes yours tick? How maternal cardiorespiratory physiology influences newborns’ heart rate variability. Biol Psychol 108(April 2015):132–141. https://doi.org/10.1016/j.biopsycho.2015.04.001

    Article  PubMed  Google Scholar 

  22. Thelen E (1979) Rhythmical stereotypies in normal human infants. Anim Behav 27:699–715. https://doi.org/10.1016/0003-3472(79)90006-X

    Article  CAS  PubMed  Google Scholar 

  23. Thelen E (1981) Kicking, rocking, and waving: contextual analysis of rhythmical stereotypies in normal human infants. Anim Behav 29(1918):3–11. https://doi.org/10.1016/S0003-3472(81)80146-7

    Article  CAS  PubMed  Google Scholar 

  24. Zentner M, Eerola T (2010) Rhythmic engagement with music in infancy. Proc Natl Acad Sci U S A 107(13):5768–5773. https://doi.org/10.1073/pnas.1000121107

    Article  PubMed  PubMed Central  Google Scholar 

  25. Eerola T, Luck G, Toiviainen P (2006) An investigation of pre-schoolers’ corporeal synchronization with music. 9th international conference on music perception and cognition, pp 472–476

    Google Scholar 

  26. de Vries JIP, Fong BF (2006) Normal fetal motility: an overview. Ultrasound Obstet Gynecol 27(6):701–711. https://doi.org/10.1002/uog.2740

    Article  PubMed  Google Scholar 

  27. Wolff PH (1968) Sucking patterns of infant mammals. Brain Behav Evol 1:354–367

    Article  Google Scholar 

  28. Wright P, Fawcett J, Crow R (1980) The development of differences in the feeding behaviour of bottle and breast fed human infants from birth to two months. Behav Process 5(1):1–20. https://doi.org/10.1016/0376-6357(80)90045-5

    Article  CAS  Google Scholar 

  29. Crook CK, Lipsitt LP (1976) Neonatal nutritive sucking: effects of taste stimulation upon sucking rhythm and heart rate. Child Dev 47(2):518–522. https://doi.org/10.2307/1128812

    Article  CAS  PubMed  Google Scholar 

  30. DeCasper AJ, Fifer WP (1980) Of human bonding: newborns prefer their mothers’ voices. Science 208(4448):1174–1176. https://doi.org/10.1126/science.7375928

    Article  CAS  PubMed  Google Scholar 

  31. Bobin-Bègue A, Provasi J, Marks A, Pouthas V (2006) Influence of auditory tempo on the endogenous rhythm of non-nutritive sucking. Rev Eur Psychol Appl 56(4):239–245

    Article  Google Scholar 

  32. Bobin-Bègue A, Provasi J (2008) Régulation rythmique avant 4 ans: effet d’un tempo auditif sur le tempo moteur. Annee Psychol 108(04):631–658. https://doi.org/10.4074/S000350330800403X

    Article  Google Scholar 

  33. Drake C, Jones MR, Baruch C (2000) The development of rhythmic attending in auditory sequences: attunement, referent period, focal attending. Cognition 77:251–288

    Article  CAS  Google Scholar 

  34. Provasi J, Bobin-Bègue A (2003) Spontaneous motor tempo and rhythmical synchronization in 21/2- and 4-year-old children. Int J Behav Dev 27(3):220–231

    Article  Google Scholar 

  35. Vanneste S, Pouthas V, Wearden JH (2001) Temporal control of rhythmic performance: a comparison between young and old adults. Exp Aging Res 27(1):83–102. https://doi.org/10.1080/036107301750046151

    Article  CAS  PubMed  Google Scholar 

  36. Moussay S, Dosseville F, Gauthier A, Larue J (2002) Circadian rhythms during cycling exercise and finger-tapping task. Chronobiol Int 19(6):1137–1149. https://doi.org/10.1081/CBI-120015966

    Article  CAS  PubMed  Google Scholar 

  37. Cohen RA, Barnes HJ, Jenkins M, Albers HE (1997) Disruption of short-duration timing associated with damage to the suprachiasmatic region of the hypothalamus. Neurology 48(6):1533–1539. https://doi.org/10.1212/WNL.51.3.919-b

    Article  CAS  PubMed  Google Scholar 

  38. Wolff PH (1969) The natural history of crying and other vocalizations in infancy. In: Foss BM (ed) Determinants of infant behavior IV. Methuen, London, pp 81–111

    Google Scholar 

  39. Provasi J, Anderson DI, Barbu-Roth MA (2014) Rhythm perception, production, and synchronization during the perinatal period. Front Psychol 5(September):1–16. https://doi.org/10.3389/fpsyg.2014.01048

    Article  Google Scholar 

  40. Brennan M, Kirkland J (1982) Classification of infant cries using descriptive scales. Infant Behav Dev 5(2–4):341–346. https://doi.org/10.1016/S0163-6383(82)80044-1

    Article  Google Scholar 

  41. Wermke K, Mende W (2009) Musical elements in human infants’ cries: in the beginning is the melody. Music Sci 13(2 Suppl):151–175. https://doi.org/10.1177/1029864909013002081

    Article  Google Scholar 

  42. Mampe B, Friederici AD, Christophe A, Wermke K (2009) Newborns’ cry melody is shaped by their native language. Curr Biol 19(23):1994–1997. https://doi.org/10.1016/j.cub.2009.09.064

    Article  CAS  PubMed  Google Scholar 

  43. Provasi J, Barbu-Roth MA (2009) Motor synchronization to tempo in newborns. In Proceeding of the 12th international symposium on rhythm perception and production. Workshop, distored Time and motor control. Proceeding of the 12th international symposium on rhythm perception and production. Workshop, distored time and motor control, Lille, France

    Google Scholar 

  44. Louis J, Cannard C, Bastuji H, Challamel M-J (1997) Sleep ontogenesis revisited: a longitudinal 24-hour home polygraphic study on 15 normal infants during the first two years of life. Sleep 20(5):323–333

    Article  CAS  Google Scholar 

  45. Mirmiran M, Maas YGH, Ariagno RL (2003) Development of fetal and neonatal sleep and circadian rhythms. Sleep Med Rev 7(4):321–334. https://doi.org/10.1053/smrv.2002.0243

    Article  PubMed  Google Scholar 

  46. Grigg-Damberger M, Gozal D (2007) The visual scoring of sleep and arousal in infants and children. J Clin Sleep Med 3(2):201–240

    PubMed  Google Scholar 

  47. Galland BC, Taylor BJ, Elder DE, Herbison P (2012) Normal sleep patterns in infants and children: a systematic review of observational studies. Sleep Med Rev 16(3):213–222. https://doi.org/10.1016/j.smrv.2011.06.001

    Article  PubMed  Google Scholar 

  48. Schwichtenberg AJ, Anders TF, Vollbrecht M, Poehlmann J (2011) Daytime sleep and parenting interactions in infants born preterm. J Dev Behav Pediatr 32(1):8–17. https://doi.org/10.1097/DBP.0b013e3181fa57e4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nishihara K, Horiuchi S, Eto H, Uchida S (2002) The development of infants’ circadian rest-activity rhythm and mothers’ rhythm. Physiol Behav 77(1):91–98

    Article  CAS  Google Scholar 

  50. Wulff K, Dedek A, Siegmund R (2001) Circadian and ultradian time patterns in human behavior: part 2: social synchronisation during the development of the infant’s diurnal activity-rest pattern. Biol Rhythm Res 32(5):529–546. https://doi.org/10.1076/brhm.32.5.529.1295

    Article  Google Scholar 

  51. Thomas KA, Burr RL, Spieker S, Lee J, Chen J (2014) Mother-infant circadian rhythm: development of individual patterns and dyadic synchrony. Early Hum Dev 90(12):885–890. https://doi.org/10.1016/j.earlhumdev.2014.09.005

    Article  PubMed  PubMed Central  Google Scholar 

  52. Schaal B, Orgeur P, Rognon C (1995) Odor sensing in the human fetus: anatomical, functional, and chemoecological bases. http://psycnet.apa.org/psycinfo/1995-98392-008

  53. Bakeman R, Adamson LB (1984) Coordinating attention to people and objects in mother-infant and peer-infant interaction. Child Dev 55(4):1278–1289. https://doi.org/10.2307/1129997

    Article  CAS  PubMed  Google Scholar 

  54. Robertson SS, Bacher LF, Huntington NL (2001) The integration of body movement and attention in young infants. Psychol Sci 12(6):523–526. http://www.ncbi.nlm.nih.gov/pubmed/11760142

    Article  CAS  Google Scholar 

  55. Brackbill Y (1973) Continuous stimulation reduces arousal level: stability of the effect over time. Child Dev 44:43–46

    Article  CAS  Google Scholar 

  56. Feldman R, Mayes LC (1999) The cyclic organization of attention during habituation is related to infants’ information processing. Infant Behav Dev 22(1):37–49. https://doi.org/10.1016/S0163-6383(99)80004-6

    Article  Google Scholar 

  57. Jones MR (1974) Cognitive representations of serial patterns. Human information processing. http://scholar.google.fr/scholar?q=mari+riess+jones+1974&btnG=&hl=fr&as_sdt=0%2C5#0

  58. Martin T, Egly R, Houck JM, Bish JP, Barrera BD, Lee DC, Tesche CD (2005) Chronometric evidence for entrained attention. Percept Psychophys 67(1):168–184. https://doi.org/10.3758/BF03195020

    Article  PubMed  Google Scholar 

  59. Perra O, Gattis M (2012) Attention engagement in early infancy. Infant Behav Dev 35(4):635–644. https://doi.org/10.1016/j.infbeh.2012.06.004

    Article  PubMed  Google Scholar 

  60. Stroganova TA, Orekhova EV, Posikera IN (1998) Externally and internally controlled attention in infants: an EEG study. Int J Psychophysiol 30(3):339–351

    Article  CAS  Google Scholar 

  61. Parrott WG, Gleitman H (1989) Infants’ expectations in play: the joy of peek-a-boo. Cognit Emot 3(4):291–311

    Article  Google Scholar 

  62. Pederson DR, Vrugt DT (1973) The influence of amplitude and frequency of vestibular stimulation on the activity of two-month-old infants. Child Dev 44(1):122–128

    Article  CAS  Google Scholar 

  63. Ter Vrugt D, Pederson DR (1973) The effects of vertical rocking frequencies on the arousal level in two-month-old infants. Child Dev 44(1):205–209

    Article  CAS  Google Scholar 

  64. Wichniak A, Tracik F, Geisler P, Ebersbach G, Morrissey SP, Zulley J (2001) Rhythmic feet movements while falling asleep. Mov Disord 16(6):1164–1170

    Article  CAS  Google Scholar 

  65. Mistlberger RE, Skene DJ (2004) Social influences on mammalian circadian rhythms: animal and human studies. Biol Rev Camb Philos Soc 79(3):533–556. https://doi.org/10.1017/S1464793103006353

    Article  PubMed  Google Scholar 

  66. Cito G, Luisi S, Mezzesimi A, Cavicchioli C, Calonaci G, Petraglia F (2005) Maternal position during non stress test and fetal heart rate patterns. Acta Obstet Gynecol Scand 84(4):335–338. https://doi.org/10.1111/j.0001-6349.2005.00644.x

    Article  PubMed  Google Scholar 

  67. Lecanuet J-P, Jacquet A-Y (2002) Fetal responsiveness to maternal passive swinging in low heart rate variability state: effects of stimulation direction and duration. Dev Psychobiol 40(1):57–67

    Article  Google Scholar 

  68. Kisilevsky BS, Muir DW (1991) Human fetal and subsequent newborn responses to sound and vibration. Infant Behav Dev 14(1):1–26. https://doi.org/10.1016/0163-6383(91)90051-S

    Article  Google Scholar 

  69. Kisilevsky BS, Hains SMJ, Lee K, Xie X, Huang H, Ye HH, Zhang K, Wang Z (2003) Effects of experience on fetal voice recognition. Psychol Sci 14(3):220–224. https://doi.org/10.1111/1467-9280.02435

    Article  PubMed  Google Scholar 

  70. Bertoncini J, Nazzi T, Cabrera L, Lorenzi C (2011) Six-month-old infants discriminate voicing on the basis of temporal envelope cues (L). J Acoust Soc Am 129(5):2761–2764. https://doi.org/10.1121/1.3571424

    Article  PubMed  Google Scholar 

  71. Granier-Deferre C, Ribeiro A, Jacquet A-Y, Bassereau S (2011) Near-term fetuses process temporal features of speech. Dev Sci 14(2):336–352. https://doi.org/10.1111/j.1467-7687.2010.00978.x

    Article  PubMed  Google Scholar 

  72. Lewkowicz DJ (2000) The development of intersensory temporal perception: an epigenetic systems/limitations view. Psychol Bull 126(2):281–308. https://doi.org/10.1037/0033-2909.126.2.281

    Article  CAS  PubMed  Google Scholar 

  73. Bahrick LE, Lickliter R, Castellanos I, Todd JT (2015) Intrasensory redundancy facilitates infant detection of tempo: extending predictions of the intersensory redundancy hypothesis. Infancy:1–28. https://doi.org/10.1111/infa.12081

    Article  Google Scholar 

  74. Phillips-Silver J, Trainor LJ (2005) Feeling the beat: movement influences infant rhythm perception. Science 308(5727):1430. https://doi.org/10.1126/science.1110922

    Article  CAS  PubMed  Google Scholar 

  75. Phillips-Silver J, Trainor LJ (2008) Vestibular influence on auditory metrical interpretation. Brain Cogn 67(1):94–102. https://doi.org/10.1016/j.bandc.2007.11.007

    Article  PubMed  Google Scholar 

  76. Mehler J, Christophe A (1994) Language in the infant’s mind. Philos Trans R Soc Lond Ser B Biol Sci 346(1315):13–20. https://doi.org/10.1098/rstb.1994.0123

    Article  CAS  Google Scholar 

  77. Nazzi T, Bertoncini J, Mehler J (1998) Language discrimination by newborns: toward an understanding of the role of rhythm. J Exp Psychol Hum Percept Perform 24(3):756–766. https://doi.org/10.1037/0096-1523.24.3.756

    Article  CAS  PubMed  Google Scholar 

  78. Hains SMJ, Muir D (1996) Effects of stimulus contingency in infant-adult interactions. Infant Behav Dev 19(1996):49–61. https://doi.org/10.1016/S0163-6383(96)90043-0

    Article  Google Scholar 

  79. Pons F, Lewkowicz DJ (2014) Infant perception of audio-visual speech synchrony in familiar and unfamiliar fluent speech. Acta Psychol 149:142–147. https://doi.org/10.1016/j.actpsy.2013.12.013

    Article  Google Scholar 

  80. Bergeson TR, Trehub SE (2002) Absolute pitch and tempo in mothers’ songs to infants. Psychol Sci 13(1):72–75

    Article  Google Scholar 

  81. Delavenne A, Gratier M, Devouche E (2013) Expressive timing in infant-directed singing between 3 and 6 months. Infant Behav Dev 36:1–13

    Article  Google Scholar 

  82. Nakata T, Trehub SE (2004) Infants’ responsiveness to maternal speech and singing. Infant Behav Dev 27(4):455–464. https://doi.org/10.1016/j.infbeh.2004.03.002

    Article  Google Scholar 

  83. Shenfield T, Trehub SE, Nakata T (2003) Maternal singing modulates infant arousal. Psychol Music 31(4):365–375. https://doi.org/10.1177/03057356030314002

    Article  Google Scholar 

  84. Kisilevsky BS, Hains SMJ, Jacquet A-Y, Granier-Deferre C, Lecanuet J-P (2004) Maturation of fetal responses to music. Dev Sci 7(5):550–559. https://doi.org/10.1111/j.1467-7687.2004.00379.x

    Article  CAS  PubMed  Google Scholar 

  85. Winkler I, Háden GP, Ladinig O, Sziller I, Honing H (2009) Newborn infants detect the beat in music. Proc Natl Acad Sci U S A 106(7):2468–2471. https://doi.org/10.1073/pnas.0809035106

    Article  PubMed  PubMed Central  Google Scholar 

  86. Baruch C, Drake C (1997) Tempo discrimination in infants. Infant Behav Dev 20(4):573–577. https://doi.org/10.1016/S0163-6383(97)90049-7

    Article  Google Scholar 

  87. Demany L, McKenzie B, Vurpillot E (1977) Rhythm perception in early infancy. Nature 266:718–719. https://doi.org/10.1038/266718a0

    Article  CAS  PubMed  Google Scholar 

  88. Hannon EE, Trehub SE (2005) Metrical categories in infancy and adulthood. Psychol Sci 16(1):48–55. https://doi.org/10.1111/j.0956-7976.2005.00779.x

    Article  PubMed  Google Scholar 

  89. Bigelow A (1998) Infants’ sensitivity to familiar contingencies in social interaction. Infant Behav Dev 21:298. https://doi.org/10.1016/S0163-6383(98)91511-9

    Article  Google Scholar 

  90. Tunçgenç B, Cohen E, Fawcett C (2015) Rock with me: the role of movement synchrony in infants’ social and nonsocial choices. Child Dev 86(3):976–984. https://doi.org/10.1111/cdev.12354

    Article  PubMed  Google Scholar 

  91. Cirelli LK, Einarson KM, Trainor LJ (2014) Interpersonal synchrony increases prosocial behavior in infants. Dev Sci:1–9. https://doi.org/10.1111/desc.12193

    Article  Google Scholar 

  92. Slater J, Kraus N (2016) The role of rhythm in perceiving speech in noise: a comparison of percussionists, vocalists and non-musicians. Cogn Process 17(1):79–87. https://doi.org/10.1007/s10339-015-0740-7

    Article  PubMed  Google Scholar 

  93. Rivkees SA (2004) Emergence and influences of circadian rhythmicity in infants. Clin Perinatol 31(2):217–228., v–vi. https://doi.org/10.1016/j.clp.2004.04.011

    Article  PubMed  Google Scholar 

  94. Harrison Y (2004) The relationship between daytime exposure to light and night-time sleep in 6-12-week-old infants. J Sleep Res 13(4):345–352. https://doi.org/10.1111/j.1365-2869.2004.00435.x

    Article  PubMed  Google Scholar 

  95. McBean AL, Montgomery-Downs HE (2015) What are postpartum women doing while the rest of the world is asleep? J Sleep Res 24(3):270–278. https://doi.org/10.1111/jsr.12265

    Article  PubMed  Google Scholar 

  96. Mosko SS, Richard C, McKenna J, Drummond S (1996) Infant sleep architecture during bedsharing and possible implications for SIDS. Sleep 19(9):677–684

    Article  CAS  Google Scholar 

  97. Richard CA, Mosko SS (2004) Mother-infant bedsharing is associated with an increase in infant heart rate. Sleep 27(3):507–511

    Article  Google Scholar 

  98. Benjamin Neelon SE, Stroo M, Mayhew M, Maselko J, Hoyo C (2015) Correlation between maternal and infant cortisol varies by breastfeeding status. Infant Behav Dev 40:252–258. https://doi.org/10.1016/j.infbeh.2015.06.005

    Article  PubMed  PubMed Central  Google Scholar 

  99. Nishihara K, Horiuchi S, Eto H, Kikuchi S, Hoshi Y (2012) Relationship between infant and mother circadian rest-activity rhythm pre- and postpartum, in comparison to an infant with free-running rhythm. Chronobiol Int 29(3):363–370. https://doi.org/10.3109/07420528.2012.657762

    Article  PubMed  Google Scholar 

  100. Ferber SG, Laudon M, Kuint J, Weller A, Zisapel N (2002) Massage therapy by mothers enhances the adjustment of circadian rhythms to the nocturnal period in full-term infants. J Dev Behav Pediatr 23(6):410–415

    Article  Google Scholar 

  101. Pederson DR (1975) The soothing effect of rocking as determined by the direction and frequency of movement. Can J Behav Sci 7(3):237–243

    Article  Google Scholar 

  102. Yamasaki A, Booker A, Kapur V, Tilt A, Niess H, Lillemoe KD, Warshaw AL, Conrad C (2012) The impact of music on metabolism. Nutrition 28(11–12):1075–1080. https://doi.org/10.1016/j.nut.2012.01.020

    Article  CAS  PubMed  Google Scholar 

  103. Edwards J (2011) The use of music therapy to promote attachment between parents and infants. Arts Psychother 38(3):190–195. https://doi.org/10.1016/j.aip.2011.05.002

    Article  Google Scholar 

  104. de Graag JA, Cox RFA, Hasselman F, Jansen J, de Weerth C (2012) Functioning within a relationship: mother-infant synchrony and infant sleep. Infant Behav Dev 35(2):252–263. https://doi.org/10.1016/j.infbeh.2011.12.006

    Article  PubMed  Google Scholar 

  105. Kim YY (2015) Achieving synchrony: a foundational dimension of intercultural communication competence. Int J Intercult Relat 48:27–37. https://doi.org/10.1016/j.ijintrel.2015.03.016

    Article  CAS  Google Scholar 

  106. Moore GA, Calkins SD (2004) Infants’ vagal regulation in the still-face paradigm is related to dyadic coordination of mother-infant interaction. Dev Psychol 40(6):1068–1080. https://doi.org/10.1037/0012-1649.40.6.1068

    Article  PubMed  Google Scholar 

  107. Voegtline KM, Costigan KA, Pater HA, DiPietro JA (2013) Near-term fetal response to maternal spoken voice. Infant Behav Dev 36(4):526–533. https://doi.org/10.1016/j.infbeh.2013.05.002

    Article  PubMed  Google Scholar 

  108. Feldman R (2006) From biological rhythms to social rhythms: physiological precursors of mother-infant synchrony. Dev Psychol 42(1):175–188. https://doi.org/10.1037/0012-1649.42.1.175

    Article  PubMed  Google Scholar 

  109. Feldman R, Magori-Cohen R, Galili G, Singer M, Louzoun Y (2011) Mother and infant coordinate heart rhythms through episodes of interaction synchrony. Infant Behav Dev 34(4):569–577. https://doi.org/10.1016/j.infbeh.2011.06.008

    Article  PubMed  Google Scholar 

  110. Feldman R, Weller A, Sirota L, Eidelman AI (2002) Skin-to-skin contact (kangaroo care) promotes self-regulation in premature infants: sleep-wake cyclicity, arousal modulation, and sustained exploration. Dev Psychol 38(2):194–207. https://doi.org/10.1037/0012-1649.38.2.194

    Article  PubMed  Google Scholar 

  111. Feldman R, Greenbaum CW, Yirmiya N, Mayes LC (1996) Relations between cyclicity and regulation in mother-infant interaction at 3 and 9 months and cognition at 2 years. J Appl Dev Psychol 17(3):347–365. https://doi.org/10.1016/S0193-3973(96)90031-3

    Article  Google Scholar 

  112. Reyna BA, Brown LF, Pickler RH, Myers BJ, Younger JB (2012) Mother-infant synchrony during infant feeding. Infant Behav Dev 35(4):669–677. https://doi.org/10.1016/j.infbeh.2012.06.003

    Article  PubMed  Google Scholar 

  113. Feldman R, Singer M, Zagoory O (2010) Touch attenuates infants’ physiological reactivity to stress. Dev Sci 13(2):271–278. https://doi.org/10.1111/j.1467-7687.2009.00890.x

    Article  PubMed  Google Scholar 

  114. Van Puyvelde M, Loots G, Vinck B, De Coster L, Matthijs L, Mouvet K, Pattyn N (2013) The interplay between tonal synchrony and social engagement in mother-infant interaction. Infancy 18(5):849–872. https://doi.org/10.1111/infa.12007

    Article  Google Scholar 

  115. Trevarthen C (1979) Communication and cooperation in early infancy: a description of primary intersubjectivity. In: Before speech: the beginning of interpersonal communication. Cambridge University Press, Cambridge

    Google Scholar 

  116. Condon WS, Sander LW (1974) Synchrony demonstrated between movements of the neonate and adult speech. Child Dev 45(2):456–462. https://doi.org/10.2307/1127968

    Article  CAS  PubMed  Google Scholar 

  117. Stevenson MB, Roach MA, Ver Hoeve JN, Leavitt LA (1990) Rhythms in the dialogue of infant feeding: preterm and term infants. Infant Behav Dev 13(1):51–70. https://doi.org/10.1016/0163-6383(90)90005-S

    Article  Google Scholar 

  118. Dominguez S, Devouche E, Apter G, Gratier M (2016) The roots of turn-taking in the neonatal period. Infant Child Dev 25(3):240–255. https://doi.org/10.1002/icd.1976

    Article  Google Scholar 

  119. Nomikou I, Leonardi G, Radkowska A, Rączaszek-Leonardi J, Rohlfing KJ (2017) Taking up an active role: emerging participation in early mother–infant interaction during peekaboo routines. Front Psychol 8:1656. https://doi.org/10.3389/fpsyg.2017.01656

    Article  PubMed  PubMed Central  Google Scholar 

  120. Gratier M, Devouche E (2011) Imitation and repetition of prosodic contour in vocal interaction at 3 months. Dev Psychol 47(1):67–76. https://doi.org/10.1037/a0020722

    Article  PubMed  Google Scholar 

  121. Jaffe J, Beebe B, Feldstein S, Crown CL, Jasnow MD, Rochat P, Stern DN (2001) Rhythms of dialogue in infancy: coordinated timing in development. Monogr Soc Res Child Dev 66(2):i–viii, 1-132.

    CAS  PubMed  Google Scholar 

  122. Gudmundsdottir HR, Trehub SE (2012) Mothers as singing mentors for infants. In: Graham Welch JN, Howard DM (eds) The Oxford handbook of singing. Oxford University Press, Oxford, pp 2013–2015. https://doi.org/10.1093/law/9780199599752.003.0065

    Chapter  Google Scholar 

  123. Rock AML, Trainor LJ, Addison TL (1999) Distinctive messages in infant-directed lullabies and play songs. Dev Psychol 35(2):527–534

    Article  CAS  Google Scholar 

  124. Kirschner S, Tomasello M (2009) Joint drumming: social context facilitates synchronization in preschool children. J Exp Child Psychol 102(3):299–314. https://doi.org/10.1016/j.jecp.2008.07.005

    Article  PubMed  Google Scholar 

  125. Keller H, Otto H, Lamm B, Yovsi RD, Kärtner J (2008) The timing of verbal/vocal communications between mothers and their infants: a longitudinal cross-cultural comparison. Infant Behav Dev 31(2008):217–226. https://doi.org/10.1016/j.infbeh.2007.10.001

    Article  PubMed  Google Scholar 

  126. Gratier M (2003) Expressive timing and interactional synchrony between mothers and infants: Cultural similarities, cultural differences, and the immigration experience. Cogn Dev 18(2003):533–554. https://doi.org/10.1016/j.cogdev.2003.09.009

    Article  Google Scholar 

  127. Trevarthen C (2000) Musicality and the intrinsic motive pulse: evidence from human psychobiology and infant communication. Music Sci 1999:155–215. https://doi.org/10.1177/10298649000030S109

    Article  Google Scholar 

  128. Gratier M, Trevarthen C (2008) Musical narrative and motives for culture in mother-infant vocal interaction. J Conscious Stud (10):122–158

    Google Scholar 

  129. Hedenbro M, Shapiro AF, Gottman JM (2006) Play with me at my speed: describing differences in the tempo of parent-infant interactions in the Lausanne triadic play paradigm in two cultures. Fam Process 45(4):485–498

    Article  Google Scholar 

  130. Trehub SE, Unyk AM, Trainor LJ (1993) Maternal singing in cross-cultural perspective. Infant Behav Dev 16:285–295. https://doi.org/10.1016/0163-6383(93)80036-8

    Article  Google Scholar 

  131. Siegmund R, Tittel M, Schiefenhövel W (1994) Time patterns in parent-child interactions in a trobriand village (Papua New Guinea). Biol Rhythm Res 25(3):241–251. https://doi.org/10.1080/09291019409360299

    Article  Google Scholar 

  132. Shimizu M, Park H, Greenfield PM (2014) Infant sleeping arrangements and cultural values among contemporary Japanese mothers. Front Psychol 5:718. https://doi.org/10.3389/fpsyg.2014.00718

    Article  PubMed  PubMed Central  Google Scholar 

  133. Louis J, Govindama Y (2004) Troubles du sommeil et rituels d’endormissement chez le jeune enfant dans une perspective transculturelle. Arch Pediatr 11(2004):93–98. https://doi.org/10.1016/j.arcped.2003.11.012

    Article  CAS  PubMed  Google Scholar 

  134. Sadeh A, Mindell JA, Rivera L (2011) “My child has a sleep problem”: a cross-cultural comparison of parental definitions. Sleep Med 12(5):478–482. https://doi.org/10.1016/j.sleep.2010.10.008

    Article  PubMed  Google Scholar 

  135. Ciccone A (2005) L’expérience du rythme chez le bébé et dans le soin psychique. Neuropsychiatr Enfance Adolesc 53(1–2 Special Issue):24–31. https://doi.org/10.1016/j.neurenf.2005.01.002

    Article  Google Scholar 

  136. Duclos K (2002) Au sujet d’une modalité particulière de recours à l’activité physique : les procédés autocalmants. Philos Sci 6(1):93–103. https://eudml.org/doc/103670

    Google Scholar 

  137. Golombek DA, Casiraghi LP, Agostino PV, Paladino N, Duhart JM, Plano SA, Chiesa JJ (2013) The times they’re a-changing: effects of circadian desynchronization on physiology and disease. J Physiol Paris 107(4):310–322. https://doi.org/10.1016/j.jphysparis.2013.03.007

    Article  PubMed  Google Scholar 

  138. Dearing E, McCartney K, Marshall NL, Warner RM (2001) Parental reports of children’s sleep and wakefulness: longitudinal associations with cognitive and language outcomes. Infant Behav Dev 24(2):151–170. https://doi.org/10.1016/S0163-6383(01)00074-1

    Article  Google Scholar 

  139. Monk TH, Burk LR, Klein MH, Kupfer DJ, Soehner AM, Essex MJ (2010) Behavioral circadian regularity at age 1 month predicts anxiety levels during school-age years. Psychiatry Res 178(2):370–373. https://doi.org/10.1016/j.psychres.2009.09.020

    Article  PubMed  PubMed Central  Google Scholar 

  140. Pennestri M-H, Moss E, O’Donnell K, Lecompte V, Bouvette-Turcot A-A, Atkinson L, Minde K, Gruber R, Fleming AS, Meaney MJ, Gaudreau H (2015) Establishment and consolidation of the sleep-wake cycle as a function of attachment pattern. Attach Hum Dev 17(1):23–42. https://doi.org/10.1080/14616734.2014.953963

    Article  PubMed  Google Scholar 

  141. Simpson JM (2001) Infant stress and sleep deprivation as an aetiological basis for the sudden infant death syndrome. Early Hum Dev 61(1):1–43. https://doi.org/10.1016/S0378-3782(00)00127-4

    Article  CAS  PubMed  Google Scholar 

  142. Sturner WQ, Lynch HJ, Deng MH, Gleason RE, Wurtman RJ (1990) Melatonin concentrations in the sudden infant death syndrome. Forensic Sci Int 45:171–180

    Article  CAS  Google Scholar 

  143. O’Connor RP, Persinger MA (1997) Geophysical variables and behavior: LXXXH. A strong association between sudden infant death syndrome and increments of global geomagnetic activity - possible support for the melatonin hypothesis. Percept Mot Skills 84(2):395–402

    Article  Google Scholar 

  144. Weydahl A, Sothern RB, Cornélissen G, Wetterberg L (2000) Geomagnetic activity influences the melatonin secretion at latitude 70° N. Biomed Pharmacother 55:s57–s62. https://doi.org/10.1016/S0753-3322(01)90006-X

    Article  Google Scholar 

  145. Maiello S (2003) The rhythmical dimension of the mother-infant relationship – transcultural considerations. J Child Adolesc Ment Health 15(2):81–86. https://doi.org/10.2989/17280580309486552

    Article  PubMed  Google Scholar 

  146. Brandon DH, Holditch-Davis D, Belyea M (2002) Preterm infants born at less than 31 weeks’ gestation have improved growth in cycled light compared with continuous near darkness. J Pediatr 140(2):192–199. https://doi.org/10.1067/mpd.2002.121932

    Article  PubMed  Google Scholar 

  147. Barnard KE, Bee HL (1983) The impact of temporally patterned stimulation on the development of preterm infants. Child Dev 54(5):1156–1167. https://doi.org/10.2307/1129671

    Article  CAS  PubMed  Google Scholar 

  148. Groswasser J, Sottiaux M, Rebuffat E (1995) Reduction in obstructive breathing events during body rocking: a controlled polygraphic study in preterm and full-term infants. Pediatrics 96(1 Pt 1):64–68

    CAS  PubMed  Google Scholar 

  149. White-Traut RC, Nelson MN (1988) Maternally administered tactile, auditory, visual, and vestibular stimulation: relationship to later interactions between mothers and premature infants. Res Nurs Health 11(1):31–39. https://doi.org/10.1002/nur.4770110106

    Article  CAS  PubMed  Google Scholar 

  150. White-Traut RC, Nelson MN, Silvestri JM, Vasan U, Littau S, Meleedy-Rey P, Gu G, Patel M (2002) Effect of auditory, tactile, visual, and vestibular intervention on length of stay, alertness, and feeding progression in preterm infants. Dev Med Child Neurol 44(2):91–97. https://doi.org/10.1111/j.1469-8749.2002.tb00293.x

    Article  PubMed  Google Scholar 

  151. Standley JM (2012) A discussion of evidence-based music therapy to facilitate feeding skills of premature infants: the power of contingent music. Arts Psychother 39(5):379–382. https://doi.org/10.1016/j.aip.2012.06.009

    Article  Google Scholar 

  152. Loewy J, Stewart K, Dassler A-M, Telsey A, Homel P (2013) The effects of music therapy on vital signs, feeding, and sleep in premature infants. Pediatrics 131(5):902–918. https://doi.org/10.1542/peds.2012-1367

    Article  PubMed  Google Scholar 

  153. Filippa M, Devouche E, Arioni C, Imberty M, Gratier M (2013) Live maternal speech and singing have beneficial effects on hospitalized preterm infants. Acta Paediatr 102(10). https://doi.org/10.1111/apa.12356

    Article  Google Scholar 

  154. Tordjman S, Davlantis KS, Georgieff N, Geoffray M-M, Speranza M, Anderson GM, Xavier J, Botbol M, Oriol C, Bellissant E, Vernay-Leconte J, Fougerou C, Hespel A, Tavenard A, Cohen D, Kermarrec S, Coulon N, Bonnot O, Dawson G (2015) Autism as a disorder of biological and behavioral rhythms: toward new therapeutic perspectives. Front Pediatr 3(February). https://doi.org/10.3389/fped.2015.00001

  155. Amos P (2013) Rhythm and timing in autism: learning to dance. Front Integr Neurosci 7(April):1–15. https://doi.org/10.3389/fnint.2013.00027

    Article  Google Scholar 

  156. Charrier A, Tardif C, Gepner B (2016) Amélioration de l’exploration visuelle d’un visage par des enfants avec autisme grâce au ralentissement de la dynamique faciale: une étude préliminaire en oculométrie. L’Encéphale. https://doi.org/10.1016/j.encep.2016.02.005

    Article  CAS  Google Scholar 

  157. Wimpory D, Nicholas B, Nash S (2002) Social timing, clock genes and autism: A new hypothesis. J Intellect Disabil Res 46(4):352–358. https://doi.org/10.1046/j.1365-2788.2002.00423

    Article  CAS  PubMed  Google Scholar 

  158. Weinstock M (2008) The long-term behavioural consequences of prenatal stress. Neurosci Biobehav Rev 32(6):1073–1086. https://doi.org/10.1016/j.neubiorev.2008.03.002

    Article  CAS  PubMed  Google Scholar 

  159. Gotlib IH, LeMoult J, Colich NL, Foland-Ross LC, Hallmayer J, Joormann J, Lin J, Wolkowitz OM (2014) Telomere length and cortisol reactivity in children of depressed mothers. Mol Psychiatry:1–6. https://doi.org/10.1038/mp.2014.119

    Article  Google Scholar 

  160. Armstrong KL, O’Donnell H, McCallum R, Dadds M (1998) Childhood sleep problems: association with prenatal factors and maternal distress/depression. J Paediatr Child Health 34(3):263–266. https://doi.org/10.1046/j.1440-1754.1998.00214.x

    Article  CAS  PubMed  Google Scholar 

  161. Field TM (2011) Prenatal depression effects on early development: a review. Infant Behav Dev 34(1):1–14. https://doi.org/10.1016/j.infbeh.2010.09.008

    Article  PubMed  Google Scholar 

  162. Kaplan L a, Evans L, Monk C (2008) Effects of mothers’ prenatal psychiatric status and postnatal caregiving on infant biobehavioral regulation: can prenatal programming be modified? Early Hum Dev 84(4):249–256. https://doi.org/10.1016/j.earlhumdev.2007.06.004

    Article  PubMed  Google Scholar 

  163. Zárate-Guerrero G, Devouche E, Espinosa-Gómez MC, Apter G (2014) Évaluer les difficultés interactives entre une mère déprimée et son bébé de 3 mois au moyen de l’échelle GRMII de Fiori-Cowley et Murray. Neuropsychiatr Enfance Adolesc 62(1):47–52. https://doi.org/10.1016/j.neurenf.2013.08.003

    Article  Google Scholar 

  164. Hernandez-Reif M, Maluga M, Field T (2012) Maternal depression and infant birth measures relate to how neonates respond to music. Infant Behav Dev 35(4):655–661. https://doi.org/10.1016/j.infbeh.2012.07.004

    Article  PubMed  Google Scholar 

  165. Van Puyvelde M, Rodrigues H, Loots G, Coster L, De D, Ville K, Matthijs L, Simcock D, Pattyn N (2014) Shall we dance? Music as a port of entrance to maternal–infant intersubjectivity in a context of postnatal depression. Infant Ment Health J 35(3):1–12. https://doi.org/10.1002/imhj.21431

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Bobin-Bègue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bobin-Bègue, A. (2019). Rhythms in Early Development. In: Apter, G., Devouche, E., Gratier, M. (eds) Early Interaction and Developmental Psychopathology. Springer, Cham. https://doi.org/10.1007/978-3-030-04769-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04769-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04767-2

  • Online ISBN: 978-3-030-04769-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics