Skip to main content

Remote Sensing Technology for Evaluation of Variations in Land Surface Temperature, and Case Study Analysis from Southwest Nigeria

  • Chapter
  • First Online:
Geospatial Challenges in the 21st Century

Part of the book series: Key Challenges in Geography ((KCHGE))

Abstract

Recent studies have shown that evaluation of the changes in the Land Surface Temperature (LST) of any area can be a reflector of changes in urbanisation trend, industrial activities, population change and natural factors. Subsequently, many researches have evolved over time, especially with development in remote sensing, digital image processing and geographical information systems. This chapter is aimed at providing information on the relevance and challenges of remote sensing as a geospatial technology that is capable of being used for monitoring LST at different spatial and timescales. The case study analysis indicated that the results from the remote sensing processing of the imageries reflect significant influence of the spatial resolutions of selected imageries. The challenges of huge image data gaps, cloud cover, coarse spatial and temporal resolution, limited night-time data for evaluation of night-time urban heat island—for both technical and security reasons, influenced the reliability of the study results. The study recommended policies for improvement in the applications and utilisation of the geospatial technology in many developing countries, including Nigeria based on its strengths.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdulhamed AI, Nduka IC, Sawa BA, Usman AK (2012) An analysis of the Urban Canopy Heat Island (UCHI) of Kano. J Environ Earth Sci 5(13):166–169

    Google Scholar 

  • Ackerman S, Strabala K, Menzel P, Frey R, Moeller C, Gumley L (1998) Discriminating clear sky from clouds with MODIS. J Geophys Res 103:141–157

    Article  Google Scholar 

  • Adebayo YR (1990) Aspects of the variation in some characteristics of radiation budget within the urban canopy of Ibadan. Atmos Environ Part B Urban Atmos 24(1):9–17

    Article  Google Scholar 

  • Aderoju OM, Samakinwa EK, Ibrahim D (2013) An assessment of Urban Heat Island in Akure using geospatial techniques. J Environ Sci Taxicol 6(3):24–34

    Google Scholar 

  • Aires F, Prigent C, Rossow WB, Rothstein M (2001) A new neural network approach including first-guess for retrieval of atmospheric water vapor, cloud liquid water path, surface temperature and emissivity over land from satellite microwave observations. J Geophys Res 106:14887–14907

    Article  Google Scholar 

  • Akinbode OM, Eludoyin AO, Fashae OA (2008) Temperature and relative humidity distributions in a medium-size administrative town in southwest Nigeria. J Environ Manage 87(1):95–105

    Article  Google Scholar 

  • Alsultan S, Lim HS, MatJafri MZ, Abdullah K (2005) An algorithm for land surface temperature analysis of remote sensing image coverage over AlQassim, Saudi Arabia. From Pharaohs to Geoinformatics FIG Working Week, 16–21

    Google Scholar 

  • Atitar M, Sobrino JA, Soria G, Wigneron JP, JimĂ©nez-Muñoz JC, Julien Y, Belen Ruescas A (2008) Land surface temperature retrieved from SEVIRI/MSG2 data: algoritm and validation. In: Proceedings of 2008 EUMETSAT meteorological Satellite conference, Darmstadt, Germany, 8–12 September 2008

    Google Scholar 

  • Ayanlade A, Jegede OO (2015) Evaluation of the intensity of the daytime surface urban heat island: how can remote sensing help? Int J Image Data Fusion 6(4):348–365

    Article  Google Scholar 

  • Balogun IA, Balogun AA (2014) Urban heat island and bioclimatological conditions in a hot-humid tropical city: the example of Akure, Nigeria. DIE ERDE J Geogr Soc Berlin 145(1–2):3–15

    Google Scholar 

  • Balogun IA, Balogun AA, Adeyewa ZD (2012) Observed urban heat island characteristics in Akure, Nigeria. Afr J Env Sci Technol 6(1):1–8

    Article  Google Scholar 

  • Bastiaanssen WG, Molden DJ, Makin IW (2000) Remote sensing for irrigated agriculture: examples from research and possible applications. Agric Water Manag 46(2):137–155

    Article  Google Scholar 

  • Carver MB, Kiteley JC, Zhou RN, Junop SV, Rowe DS (1995) Validation of the ASSERT subchannel code: prediction of critical heat flux in standard and nonstandard CANDU bundle geometries. Nucl Technol 112(3):299–314

    Article  Google Scholar 

  • Clark J, Parsons A, Zajkowski T, Lannom K (2003) Remote sensing imagery support for burned area emergency response teams on 2003 southern California wildfires. USFS Remote Sens Appl Cent BAER Support Summ

    Google Scholar 

  • Clevers JGPW (1997) A simplified approach for yield prediction of sugar beet based on optical remote sensing data. Remote Sens Environ 61(2):221–228

    Article  Google Scholar 

  • Efe SI, Eyefia AO (2014) Urban effects on the precipitation of Benin, Nigeria. Am J Clim Change 2014

    Google Scholar 

  • Enete IC, Alabi MO (2012) Characteristics of urban heat island in Enugu during rainy season. Ethiop J Environ Stud Manage 5(4):391–396

    Google Scholar 

  • Enete IC, Okwu VU (2013) Mapping Enugu City’s urban heat island. Int J Environ Prot Policy 1,(4): 50-58.

    Google Scholar 

  • Foody GM, Curran PJ (1994) Estimation of tropical forest extent and regenerative stage using remotely sensed data. J Biogeogr, 223–244

    Article  Google Scholar 

  • Hoyt H (1933) One hundred years of land values in Chicago: the relationship of the growth of Chicago and the rise in its land values, 1830–1933. University of Chicago Press

    Google Scholar 

  • Hurtado E, Vidal A, Caselles V (1996) Comparison of two atmospheric correction methods for landsat TM thermal band. Int J Remote Sens 17(2):237–247

    Article  Google Scholar 

  • Ifatimehin OO, Adeyemi S (2008) A satellite remote sensing based land surface temperature retreival from Landsat TM data. Ethiop J Environ Stud Manage 1(3):63–70

    Google Scholar 

  • Ifatimehin OO, Ishaya S, Fanan U (2010) An analysis of temperature variations using remote sensing approach in Lokoja Area. Niger Prod Agric Technol. ISSN: 0794-5213

    Google Scholar 

  • Jin M, Dickinson RE (1996) Correcting the orbit drift effect on AVHRR land surface skin temperature measurements. Int J Remote Sens 24:4543–4558

    Article  Google Scholar 

  • Lillesand TM, Kiefer RW, Chipman JW (2004) Remote sensing and image interpretation. Wiley, New York

    Google Scholar 

  • Liu Y, Hiyama T, Yamaguchi Y (2006) Scaling of land surface temperature using satellite data: a case examination on ASTER and MODIS products over a heterogeneous terrain area. Remote Sens Environ 105(2):115–128

    Article  Google Scholar 

  • Luvall JC, Lieberman D, Lieberman M, Hartshon GS, Peralta R (1990) Estimation of tropical forest canopy temperatures, thermal response numbers, and evapotranspiration using an aircraft-based thermal sensor. Photogram Eng Remote Sens 56(10):1393–1401

    Google Scholar 

  • Mallick J, Kant Y, Bharath BD (2008) Estimation of land surface temperature over Delhi using Landsat-7 ETM+. J Ind Geophys Union 12(3):131–140

    Google Scholar 

  • Matsui S, Igaku Y, Ishigaki H, Fujita J, Ishida M, Ochiai Y, Namatsu H, Komuro M (2003) Room-temperature nanoimprint and nanotransfer printing using hydrogen silsequioxane. J Vacuum Sci Technol B: Microelectron Nanometer Struct Proc Meas Phenom 21(2):688–692

    Article  Google Scholar 

  • Mausel P, Wu Y, Li Y, Moran EF, Brondizio ES (1993) Spectral identification of successional stages following deforestation in the Amazon. Geocarto Int 8(4):61–71

    Article  Google Scholar 

  • NASA (2013) https://www.nasa.gov/content/year-in-review-2013-feature. Accessed 14 Dec 2016

  • National Population Commission (2006) The nigeria population census 2006. Accessed on 23 Feb 2011

    Google Scholar 

  • Nwofor OK, Dike VN (2010) Day-time surface air temperature variations at locations in Owerri Capital City; Indications of Urban Heat Island Build-up? Adv Sci Technol 4(2):91–97

    Google Scholar 

  • Odunuga S, Badru G (2015) Landcover change, land surface temperature, surface albedo and topography in the Plateau Region of North-Central Nigeria. Land 4(2):300–324

    Article  Google Scholar 

  • Oke TR (1987) Boundary layer climates. Routledge, London. First published in 1978 by Methuen & Co. Ltd. Second edition 1987 Routledge is an imprint of the Taylor & Francis Group. This edition published in the Taylor & Francis e-Library, 2009, pp 435

    Google Scholar 

  • Oluwamimo S (2006) The temporal structure of the Urban Heat Island in Lagos State, Nigeria. Eur Geosci Union, Geophys Res Abs 8

    Google Scholar 

  • Omotoso I (2017) A remote sensing-based evaluation of the spatiotemporal variations in land surface temperatures, and their relationship with urban development in Eti-Osa, LGA, Lagos State. Unpublished M.Sc. research. Obafemi Awolowo University, Ile-Ife, Nigeria, 92p

    Google Scholar 

  • Peña MA (2009) Examination of the land surface temperature response for Santiago, Chile. Photogram Eng Remote Sens 75(10):1191–1200

    Article  Google Scholar 

  • Pinheiro R, Mahoney JL, Privette T, Tucker CJ (2006) Development of a daily long-term record of NOAA-14 AVHRR land surface temperature over Africa. Remote Sens Environ 103:153–164

    Article  Google Scholar 

  • Popoola KS (2016) Assessment of urban heat island from remotely sensed and in situ data sources over Ile-Ife, Osun State. Environmental Control and Management. Unpublished M.Sc. research. Obafemi Awolowo University, Ile-Ife, Nigeria, 89p

    Google Scholar 

  • Prata AJ, Caselles V, Coll C, Sobrino JA, Ottle C (1995) Thermal remote sensing of land surface temperature from satellites: Current status and future prospects. Remote Sens Rev 12(3–4):175–224

    Article  Google Scholar 

  • Rasmussen MO, Gottsche FM, Olesen FS, Sandholt I (2011) Directional effects on land surface temperature estimation from Meteosat Second Generation for savanna landscapes. IEEE Trans Geosci Remote Sens 49(11):4458–4468

    Article  Google Scholar 

  • Snyder WC (2000) Requirements for satellite land surface temperature validation using a Silt Playa. Remote Sens Environ 6:279–289

    Google Scholar 

  • Sobrino JA, Coll C, Caselles V (2006) Atmospheric corrections for land surface temperature using AVHRR channel 4 and 5. Remote Sens Environ 38(1):19–34

    Article  Google Scholar 

  • Southworth J, Munroe D, Nagendra H (2004) Land cover change and landscape fragmentation—comparing the utility of continuous and discrete analyses for a western Honduras region. Agr Ecosyst Environ 101(2):185–205

    Article  Google Scholar 

  • Streutker DR (2002) A remote sensing study of the urban heat island of Houston, Texas. Int J Remote Sens 23(13):2595–2608

    Article  Google Scholar 

  • Sun Y (2011) Retrieval and application of land surface temperature. Term Paper, pp 1–27. Retrieved on 15 Sept 2018 from http://www.geo.utexas.edu/courses/387H/PAPERS/Term%20paper-Sun.pdf

  • Sun D, Pinker RT (2003) Estimation of land surface temperature from a geostationary operational environmental satellite (GOES-8). J Geophys Res 108:4241–4326

    Article  Google Scholar 

  • Tran H, Uchihama D, Ochi S, Yasuoka Y (2006) Assessment with satellite data of the urban heat island effects in Asian mega cities. Int J Appl Earth Obs Geoinf 8:34–48

    Article  Google Scholar 

  • Tyubee BT, Anyadike RNC (2015, July) Investigating the effect of land use/land cover on Urban surface temperature in Makurdi, Nigeria. In: ICUC9–9th international conference on urban climate jointly with 12th symposium on the urban environment, pp 20–24

    Google Scholar 

  • Usman IJ (2014) An evaluation of the influence of land-use/land-cover change on the surface temperature of federal capital city (Abuja) using remote sensing and GIS, Doctoral dissertation

    Google Scholar 

  • van Leeuwen TT, Frank AJ, Jin Y, Smyth P, Goulden ML, van der Werf GR, Randerson JT (2011) Optimal use of land surface temperature data to detect changes in tropical forest cover. J Geophys Res: Biogeosci 116(G2)

    Google Scholar 

  • Voogt JA, Oke TR (2003) Thermal remote sensing of urban areas. Remote Sens Environ (special issue on Urban Areas) 86:370–384

    Article  Google Scholar 

  • Walawender JP, Hajto MJ, Iwaniuk P (2012, July) A new ArcGIS toolset for automated mapping of land surface temperature with the use of LANDSAT satellite data. In: Geoscience and Remote Sensing Symposium (IGARSS), 2012 IEEE international, IEEE, pp 4371–4374

    Google Scholar 

  • Wan Z, Dozier J (1996) A generalized split-window algorithm form retrieving land-surface temperature from space. IEEE Trans Geosci Remote Sens 34(4):892–905

    Article  Google Scholar 

  • Wang W, Liang S, Meyers T (2008) Validating MODIS land surface temperature products using long-term night-time ground measurements. Remote Sens Environ 112:623–635

    Article  Google Scholar 

  • Weng Q (2003) Land use change analysis in the Zhujiang delta of China using satellite remote sensing, GIS and stochastic modeling. J Environ Manage 64:273–284

    Article  Google Scholar 

  • Xiao H, Weng Q (2007) The impact of land use and land cover changes on land surface temperature in a karst area of China. J Environ Manage 85(1):245–257

    Article  Google Scholar 

  • Zhang X, Zhong T, Wang K, Cheng Z (2006) Scaling of impervious surface area and vegetation as indicators to urban land surface temperature using satellite data. Int J Remote Sens 30(4):841–859

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adebayo Oluwole Eludoyin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eludoyin, A.O., Omotoso, I., Eludoyin, O.M., Popoola, K.S. (2019). Remote Sensing Technology for Evaluation of Variations in Land Surface Temperature, and Case Study Analysis from Southwest Nigeria. In: Koutsopoulos, K., de Miguel González, R., Donert, K. (eds) Geospatial Challenges in the 21st Century. Key Challenges in Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-04750-4_8

Download citation

Publish with us

Policies and ethics