Skip to main content

Contribution of GIS and Hydraulic Modeling to the Management of Water Distribution Network

  • Chapter
  • First Online:
Geospatial Challenges in the 21st Century

Abstract

Increases in the growth of urban regions along with climate change have contributed to a scarcity in water resources. For arid regions, this problem may be aggravated by inadequate management plans and a lack of proper data collection related to the geographical location of water distribution networks. A possible solution is the utilization of a geographical information system (GIS) as a tool in decision-making process in the field of water distribution management. Coupling external hydraulic calculation models with GIS can further enhance this management tool. The current study utilized these tools in assessing the performance of a drinking water distribution network of an urban cluster in Tlemcen, Algeria. A methodology was developed by coupling GIS to a hydraulic calculation model (EPANET). The results showed that it is possible to obtain an alphanumeric description of the pipes, tanks, and all the accessories constituting the network. Design irregularities in the Tlemcen urban cluster’s network were identified. The approach adopted in this chapter contributes effectively to the management of water distribution networks using GIS. This offers operators a management tool that allows for analysis of malfunctions with an instantaneous response, to study various solutions and to plan for future situations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelbaki C, Benchaib MM, Benziada S, Mahmoudi H, Goosen M (2017) Management of a water distribution network by coupling GIS and hydraulic modeling: a case study of Chetouane in Algeria. Appl Water Sci 7(3):1561–1967. https://doi.org/10.1007/s13201-016-0416-1

    Article  Google Scholar 

  • Abdelbaki C (2014) Modélisation d’un réseau d’AEP et contribution à sa gestion à l’aide d’un SIG—Cas du Groupement Urbain de Tlemcen. Thèse de doctorat, Département d’Hydraulique, Université de Tlemcen, p 208. http://dspace.univ-tlemcen.dz/bitstream/112/7054/1/Doctorat_ABDELBAKI_Cherifa.pdf

  • Abdelbaki C, Touaibia B, Allal MA, Kara Slimane F (2012) Applied systemic approach to water supply network the case of an urban cluster of Tlemcen-Algeria. Procedia Eng 33:30–37

    Article  Google Scholar 

  • Abdelbaki C, Touaibia B, Mahmoudi HD, Smir SM, Allal MA, Goosen M (2014) Efficiency and performance of a drinking water supply network for an urban cluster at Tlemcen Algeria. Desalin Water Treat 52(10–12):2165–2173. https://doi.org/10.1080/19443994.2013.870497

    Article  Google Scholar 

  • ADE (2011) Rapport technique, Division d’exploitation, p 42

    Google Scholar 

  • Allal MA, Abdelbaki C, Djelloul Smir SM (2012) Une approche qualité totale pour la gestion des réseaux d’alimentation en eau potable—Cas du groupement urbain de Tlemcen (Algérie), Editions universitaires européennes, p 168

    Google Scholar 

  • Alonso JM, Alvarruiz F, Guerrero D, Hernandez V, Lopis JD, Ramos E, Martinez F, Bou V, Bartolin H (2004) Simulation of control strategies in water distribution systems, using SCADA in conjunction with calibrated models obtained from GIS, In: 6th international conference on hydroinformatics, pp 1–8

    Google Scholar 

  • Ardeshir A, Saraye M, Sabour F, Behzadian K (2006) Leakage management for water distribution system in GIS environment. World Environmental and Water Resource Congress, 21–25 May 2006, Omaha, Nebraska, USA, pp. 1–10

    Google Scholar 

  • Bach PM, Rauch W, Mikkelsen PS, McCarthy DT, Deletic A (2014) A critical review of integrated urban water modelling—urban drainage and beyond. Environ Model Softw 54:88–107

    Article  Google Scholar 

  • Bahadur R, Jonathan P, David A, William S (2001) A GIS-based water distribution model for salt lake city, UT. In: Proceedings 21st annual ESRI users conference, San Diego, CA, July 2001

    Google Scholar 

  • Barbier P (2002) Cours vertical mapper V.2.6-livret 1, Version du Cours V1.0, IGN- ENSG-CERSIG, p 32

    Google Scholar 

  • Bartolin H, Martinez F, Monterde N (2001) Connecting ArcView 3.2 to EPANET 2. A full environment to manage water distribution systems using models. Water software systems: theory and applications. In: International conference on computing and control for the water industry (CCWI’01). Montfort University, Leicester (UK), 6–9 Sept 2001, pp 355–368

    Google Scholar 

  • Bartolín H, Martínez F, Cortés J (2008) Bringing up to date WDS models by querying. An EPANET-based GIS geodatabase, eighth annual water distribution systems analysis symposium (WDSA), Cincinnati, Ohio, USA, pp 1–17

    Google Scholar 

  • Bell M, Dean C, Blake M (2000) Forecasting the pattern of urban growth with PUP: a web-based model interfaced with GIS and 3D animation. Comput Environ Urban Syst 24:559–581

    Article  Google Scholar 

  • Benson Andrew S, Dietrich Andrea M, Gallagher Daniel L (2012) Evaluation of iron release models for water distribution systems. Crit Rev Environ Sci Technol 42(1):44–97

    Article  Google Scholar 

  • Biagioni B (2004) Reportage. Géomatique Expert 39:30–34

    Google Scholar 

  • Blindu I (2004) Outil d’aide au diagnostic du réseau d’eau potable pour la ville de Chisinau par analyse spatiale et temporelle des dysfonctionnements hydrauliques. Thèse de doctorat, Ecole nationale supérieure des mines de Saint-Etienne, France, p 304

    Google Scholar 

  • Bonin J (1986) Hydraulique urbaine appliquée aux agglomérations de petite et moyenne importance, Edition Eyrolles, p 228

    Google Scholar 

  • Brown AL, Affum JK (2002) A GIS-based environmental modeling system for transportation planners. Comput Environ Urban Syst 26:577–590

    Article  Google Scholar 

  • Burrows R, Crowder GS, Zhang J (2000) Utilisation of network modelling in the operational management of water distribution systems. Urban Water 2:83–95

    Article  Google Scholar 

  • Choi T, Koo J (2015) A water supply risk assessment model for water distribution network. Desalin Water Treat 54:4–5. https://doi.org/10.1080/19443994.2014.892440

    Article  Google Scholar 

  • Daene CM, Ximing CAI (2002) Linking GIS and water resources management models: an object-oriented method. Environ Model Softw 17:413–425

    Article  Google Scholar 

  • Daoyi C, Shahriar S, CéSar CM, L L (2010) Assessment of open source GIS software for water resources management in developing countries. J Hydro-Environ Res 4:253–264

    Article  Google Scholar 

  • Deere D, Leusch FD, Humpage A, Cunliffe D, Khan SJ (2017) Hypothetical scenario exercises to improve planning and readiness for drinking water quality management during extreme weather events. Water Res 111:100–108

    Article  Google Scholar 

  • Diao K, Wang Z, Burger G, Chen CH, Rauch W, Zhou Y (2014) Speedup of water distribution simulation by domain decomposition. Environ Model Softw 52:253–263

    Article  Google Scholar 

  • Dupont A (1979) Hydraulique urbaine, Tome 2. Edition Eyrolles, France, p 484

    Google Scholar 

  • Eisenbies P, Werey C, Laplaud C (2002) L’enregistrement des défaillances pour améliorer la connaissance des réseaux d’eau potable. Tech Sci Méthodes 6:42–54

    Google Scholar 

  • Fattoruso G, De Chiara D, De Vito S, La Ferrara V, Di Francia G, Leopardi A, Cocozza E, Viscusi M, Fontana M (2014) Simulation of chlorine decay in drinking water distribution systems: case study of santa sofia network (Southern Italy). Sens Microsyst 467–470. http://link.springer.com/chapter/10.1007%2F978-3-319-00684-0_90

  • Franchini M, Alvisi S (2010) Model for hydraulic networks with evenly distributed demands along pipes. Civil Eng Environ Syst 27(2):133–153

    Article  Google Scholar 

  • Furnass WR, Mounce SR, Boxall JB (2013) Linking distribution system water quality issues to possible causes via hydraulic pathways. Environ Model Softw 40:78–87

    Article  Google Scholar 

  • Générale des eaux (2003) EPANET 2.0, Simulation Hydraulique et Qualité pour les Réseaux d’Eau sous Pression, Manuel de l’Utilisateur, p 222

    Google Scholar 

  • Gomella C (1985) Guide de l’alimentation en eau dans les agglomérations urbaines et rurales Tome I: La distribution. Edition Eyrolles, Paris, p 227

    Google Scholar 

  • Guidolin M, Burovskiy P, Kapelan Z, Savić DA (2010) CWSNet: an object-oriented toolkit for water distribution system simulations. In: Water distribution system analysis, WDSA2010, Tucson, AZ, USA, 12–15 Sept 2010, p 1694

    Google Scholar 

  • Gumbo B, Juizo D, Pieter VDZ (2003) Information is a prerequisite for water demand management: experiences from four cities in Southern Africa. Phys Chem Earth 28:827–837

    Article  Google Scholar 

  • Jia H, Wei W, Xin K (2008) Hydraulic model for multi-sources reclaimed water pipe network based on EPANET and its applications in Beijing. China. Front Environ Sci Eng China 2(1):57–62

    Article  Google Scholar 

  • Janke R, Tryby MC, Robert M (2013) Chapter 2: Protecting water supply critical infrastructure: an overview, p 57. www.springer.com

    Google Scholar 

  • Jun H, Loganathan GV, Kim JH, Park S (2008) Identifying pipes and valves of high importance for efficient operation and maintenance of water distribution systems. Water Resour Manage 22:719–736

    Article  Google Scholar 

  • Kanakoudis V, Tsitsifli S, Samaras P, Anastasios Z (2014) Water pipe networks performance assessment: benchmarking eight cases across the EU Mediterranean basin. Water Qual Expo Health. https://doi.org/10.1007/s12403-014-0113-y

    Article  Google Scholar 

  • Karadirek E, Kara S, Yilmaz G, Muhammetoglu A, Muhammetoglu H (2012) Implementation of hydraulic modelling for water-loss reduction through pressure management. Water Resour Manag 26:2555–2568

    Article  Google Scholar 

  • Kenneth RF, James PH (2009) Water loss management: conservation option in Florida’s urban water systems. Florida Water Resour J 24–32

    Google Scholar 

  • Kurek W, Ostfeld A (2013) Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. J Environ Manage 115:189–197

    Article  Google Scholar 

  • Laurini R (1993) Les bases de données en Géomatique. Edition Hermes, Paris, p 339

    Google Scholar 

  • Loucks DP, Van Beek E (2017) Water resource systems planning and management: an introduction to methods, models, and applications. Springer, New York

    Book  Google Scholar 

  • Lynn EJ (2013) Chapter 7: GIS and remote sensing applications in modern water resources engineering, p 38. www.springer.com

  • Martinez F, Hernandez VM, Alonso J, Rao Z, Alvisi S (2007) Optimizing the operation of the Valencia water distribution network. IWA Publishing J Hydroinform 09(1):65–78

    Article  Google Scholar 

  • Marunga A, Hoko Z, Kaseke E (2006) Pressure management as a leakage reduction and water demand management tool: the case of the City of Mutare, Zimbabwe. Phy Chem Earth 31:763–770

    Article  Google Scholar 

  • Nilufar I, Rehan S, Manuel JR (2013) Optimizing booster chlorination in water distribution networks: a water quality index approach. Environ Monit Assess 185:8035–8050

    Article  Google Scholar 

  • Nyerges T (1992) Coupling GIS and spatial analytical models. In: Proceedings of 5th international symposium on spatial data handling, Humanities and Social Sciences Computing Laboratory, University of South Carolina, Columbia, SC, pp 534–543

    Google Scholar 

  • Padilla SV, Davila QJ (2013) Multi-agent geosimulation for a water distribution system. In: Computing conference (CLEI), XXXIX Latin American, Naiguata, 7–11 Oct 2013, pp 1–12. Print ISBN: 978-1-4799-2957

    Google Scholar 

  • Panagopoulos GP, Bathrellos GD, Skilodimou HD, Martsouka FA (2012) Mapping urban water demands using multi-criteria analysis and GIS. Water Resour Manage 26:1347–1363

    Article  Google Scholar 

  • Pouliot J (1999) Définition d’un cadre géosémantique pour le couplage des modèles prévisionnels de comportement et des SIG-application pour les écosystèmes forestiers” Thèse de Doctorat. Ecole Polytechnique Fédérale de Lausanne, Suisse, p 171

    Google Scholar 

  • Ramesh LS, Jagadeesh CJ (2012) Simulation of hydraulic parameters in water distribution network using EPANET and GIS. In: International conference on ecological, environmental and biological sciences (ICEEBS’2012) 7–8 Jan 2012, Dubai, pp 350–353

    Google Scholar 

  • Roozbahani A, Zahraie B, Tabesh M (2013) Integrated risk assessment of urban water supply systems from source to tap. Stoch Env Res Risk Assess 27(4):923–944

    Article  Google Scholar 

  • Rossman L (2000) Epanet 2 User’s Manual, Environmental Protection Agency, Cincinnati, USA. http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html. Accessed 1 Mar 2010

  • Salomons E (2005) DXF2EPA—AutoCad DXF file conversion utility for EPANET, Notice d’utilisation

    Google Scholar 

  • Sauvagnargues-Lesage S, Ayral PA (2009) Systèmes d’Information Géographique: outil d’aide à la gestion territoriale. Techniques de l’ingénieur, Référence, p H7415

    Google Scholar 

  • Shafiqul IM, Rehan S, Manuel JR, Homayoun N, Alex F, Mina H (2013) Evaluating water quality failure potential in water distribution systems: a fuzzy-TOPSIS-OWA-based methodology. Water Resour Manag 27:2195–2216. https://doi.org/10.1007/s11269-013-0283-6

    Article  Google Scholar 

  • Sitzenfrei R, Möderl M, Rauch W (2013) Automatic generation of water distribution systems based on GIS data. Environ Model Softw 47:138–147

    Article  Google Scholar 

  • Stefan HM, Roger SP, Clive AW (2000) Calibration and comparison of chlorine decay models for a test water distribution system. Water Resour 34(8):2301–2309

    Google Scholar 

  • Tabesh M, Asadiyani Yekta AH, Burrows R (2009) An integrated model to evaluate losses in water distribution systems. Water Resour Manag 23:477–492

    Article  Google Scholar 

  • Tabesh M, Delavar MR, Delkhah A (2010) Use of geospatial information system based tool for renovation and rehabilitation of water distribution systems. Int J Environ Sci Technol 7(1):47–58

    Article  Google Scholar 

  • Tabesh M, Jamasb RM (2011) Calibration of water distribution hydraulic models: a comparison between pressure dependent and demand driven analyses. Urban Water Journal 8(2):93–102

    Article  Google Scholar 

  • Tabesh M, Saber H (2012) A prioritization model for rehabilitation of water distribution networks using GIS. Water Resour Manag 26:225–241

    Article  Google Scholar 

  • Tena-Chollet F, Sauvagnargues-Lesage S, Thierion V, Ayral PA (2010) Systèmes d’information géographique: mise en œuvre. Techniques de l’ingénieur, Référence, p H7416

    Google Scholar 

  • Yu T, Liya M, Xiaohui L, Yunzhong J (2010) Construction of water supply pipe network based on GIS and EPANET model in Fangcun District of Guangzhou, Geoscience, 2010 Second IITA International conference on and remote sensing, vol 2 (IITA-GRS). Qingdao, 28–31 Aug 2010, pp 268–271. Print ISBN: 978-1-4244-8514-7, INSPEC Accession Number: 11594527

    Google Scholar 

  • Torres JM, Brumbelow K, Guikema SD (2009) Risk classification and uncertainty propagation for virtual water distribution systems. Reliab Eng Syst Saf 94:1259–1273

    Article  Google Scholar 

  • Vairavamoorthy JY, Harshal MG, Sunil DG (2007) IRA-WDS: a GIS-based risk analysis tool for water distribution systems. Environ Model Softw 22:951–965

    Article  Google Scholar 

  • Valiron F (1994) Mémento du gestionnaire de l’alimentation en eau potable et de l’assainissement, Tome 1, 2, 3. Edition Lavoisier, Paris, p 1262

    Google Scholar 

  • Worm GIM, Der Helm AWC, Lapikas T, Schagen KM, Rietveld LC (2010) Integration of models, data management, interfaces and training support in a drinking water treatment plant simulator. Environ Model Softw 25:677–683

    Article  Google Scholar 

  • Yong L, Xiaojian L, Xiaosheng Q, Huaicheng G, Yajuan Y, Jinfeng W, Guozhu M (2007) An integrated GIS-based analysis system for land-use management of lake areas in urban fringe. Landscape Urban Plann 82:233–246

    Article  Google Scholar 

  • Zhang T (2006) The application of GIS and CARE-W on water distribution networks in Skärholmen pressure zone. In: Pipeline technology 2006 conference, Stockholm, Sweden

    Google Scholar 

  • Wu ZY, Wang RH, Walski TM, Yang SY, Bowdler D, Christopher, Baggett C (2006) Efficient pressure dependent demand model for large water distribution system analysis. Communication présentée au 8th Annual International Symposium on Water Distribution System Analysis, Cincinnati, Ohio, 27–30 Aug 2006

    Google Scholar 

  • Zhou N, Westrich B, Jiang S, Wang Y (2011) A coupling simulation based on a hydrodynamics and water quality model of the Pearl River Delta, China. J Hydrol 396:267–276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chérifa Abdelbaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelbaki, C., Touaibia, B., Ammari, A., Mahmoudi, H., Goosen, M. (2019). Contribution of GIS and Hydraulic Modeling to the Management of Water Distribution Network. In: Koutsopoulos, K., de Miguel González, R., Donert, K. (eds) Geospatial Challenges in the 21st Century. Key Challenges in Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-04750-4_7

Download citation

Publish with us

Policies and ethics