Advertisement

Contribution of GIS and Hydraulic Modeling to the Management of Water Distribution Network

  • Chérifa AbdelbakiEmail author
  • Bénina Touaibia
  • Abdelhadi Ammari
  • Hacène Mahmoudi
  • Mattheus Goosen
Chapter
Part of the Key Challenges in Geography book series (KCHGE)

Abstract

Increases in the growth of urban regions along with climate change have contributed to a scarcity in water resources. For arid regions, this problem may be aggravated by inadequate management plans and a lack of proper data collection related to the geographical location of water distribution networks. A possible solution is the utilization of a geographical information system (GIS) as a tool in decision-making process in the field of water distribution management. Coupling external hydraulic calculation models with GIS can further enhance this management tool. The current study utilized these tools in assessing the performance of a drinking water distribution network of an urban cluster in Tlemcen, Algeria. A methodology was developed by coupling GIS to a hydraulic calculation model (EPANET). The results showed that it is possible to obtain an alphanumeric description of the pipes, tanks, and all the accessories constituting the network. Design irregularities in the Tlemcen urban cluster’s network were identified. The approach adopted in this chapter contributes effectively to the management of water distribution networks using GIS. This offers operators a management tool that allows for analysis of malfunctions with an instantaneous response, to study various solutions and to plan for future situations.

Keywords

Modeling GIS Water distribution network Management 

References

  1. Abdelbaki C, Benchaib MM, Benziada S, Mahmoudi H, Goosen M (2017) Management of a water distribution network by coupling GIS and hydraulic modeling: a case study of Chetouane in Algeria. Appl Water Sci 7(3):1561–1967.  https://doi.org/10.1007/s13201-016-0416-1CrossRefGoogle Scholar
  2. Abdelbaki C (2014) Modélisation d’un réseau d’AEP et contribution à sa gestion à l’aide d’un SIG—Cas du Groupement Urbain de Tlemcen. Thèse de doctorat, Département d’Hydraulique, Université de Tlemcen, p 208. http://dspace.univ-tlemcen.dz/bitstream/112/7054/1/Doctorat_ABDELBAKI_Cherifa.pdf
  3. Abdelbaki C, Touaibia B, Allal MA, Kara Slimane F (2012) Applied systemic approach to water supply network the case of an urban cluster of Tlemcen-Algeria. Procedia Eng 33:30–37CrossRefGoogle Scholar
  4. Abdelbaki C, Touaibia B, Mahmoudi HD, Smir SM, Allal MA, Goosen M (2014) Efficiency and performance of a drinking water supply network for an urban cluster at Tlemcen Algeria. Desalin Water Treat 52(10–12):2165–2173.  https://doi.org/10.1080/19443994.2013.870497CrossRefGoogle Scholar
  5. ADE (2011) Rapport technique, Division d’exploitation, p 42Google Scholar
  6. Allal MA, Abdelbaki C, Djelloul Smir SM (2012) Une approche qualité totale pour la gestion des réseaux d’alimentation en eau potable—Cas du groupement urbain de Tlemcen (Algérie), Editions universitaires européennes, p 168Google Scholar
  7. Alonso JM, Alvarruiz F, Guerrero D, Hernandez V, Lopis JD, Ramos E, Martinez F, Bou V, Bartolin H (2004) Simulation of control strategies in water distribution systems, using SCADA in conjunction with calibrated models obtained from GIS, In: 6th international conference on hydroinformatics, pp 1–8Google Scholar
  8. Ardeshir A, Saraye M, Sabour F, Behzadian K (2006) Leakage management for water distribution system in GIS environment. World Environmental and Water Resource Congress, 21–25 May 2006, Omaha, Nebraska, USA, pp. 1–10Google Scholar
  9. Bach PM, Rauch W, Mikkelsen PS, McCarthy DT, Deletic A (2014) A critical review of integrated urban water modelling—urban drainage and beyond. Environ Model Softw 54:88–107CrossRefGoogle Scholar
  10. Bahadur R, Jonathan P, David A, William S (2001) A GIS-based water distribution model for salt lake city, UT. In: Proceedings 21st annual ESRI users conference, San Diego, CA, July 2001Google Scholar
  11. Barbier P (2002) Cours vertical mapper V.2.6-livret 1, Version du Cours V1.0, IGN- ENSG-CERSIG, p 32Google Scholar
  12. Bartolin H, Martinez F, Monterde N (2001) Connecting ArcView 3.2 to EPANET 2. A full environment to manage water distribution systems using models. Water software systems: theory and applications. In: International conference on computing and control for the water industry (CCWI’01). Montfort University, Leicester (UK), 6–9 Sept 2001, pp 355–368Google Scholar
  13. Bartolín H, Martínez F, Cortés J (2008) Bringing up to date WDS models by querying. An EPANET-based GIS geodatabase, eighth annual water distribution systems analysis symposium (WDSA), Cincinnati, Ohio, USA, pp 1–17Google Scholar
  14. Bell M, Dean C, Blake M (2000) Forecasting the pattern of urban growth with PUP: a web-based model interfaced with GIS and 3D animation. Comput Environ Urban Syst 24:559–581CrossRefGoogle Scholar
  15. Benson Andrew S, Dietrich Andrea M, Gallagher Daniel L (2012) Evaluation of iron release models for water distribution systems. Crit Rev Environ Sci Technol 42(1):44–97CrossRefGoogle Scholar
  16. Biagioni B (2004) Reportage. Géomatique Expert 39:30–34Google Scholar
  17. Blindu I (2004) Outil d’aide au diagnostic du réseau d’eau potable pour la ville de Chisinau par analyse spatiale et temporelle des dysfonctionnements hydrauliques. Thèse de doctorat, Ecole nationale supérieure des mines de Saint-Etienne, France, p 304Google Scholar
  18. Bonin J (1986) Hydraulique urbaine appliquée aux agglomérations de petite et moyenne importance, Edition Eyrolles, p 228Google Scholar
  19. Brown AL, Affum JK (2002) A GIS-based environmental modeling system for transportation planners. Comput Environ Urban Syst 26:577–590CrossRefGoogle Scholar
  20. Burrows R, Crowder GS, Zhang J (2000) Utilisation of network modelling in the operational management of water distribution systems. Urban Water 2:83–95CrossRefGoogle Scholar
  21. Choi T, Koo J (2015) A water supply risk assessment model for water distribution network. Desalin Water Treat 54:4–5.  https://doi.org/10.1080/19443994.2014.892440CrossRefGoogle Scholar
  22. Daene CM, Ximing CAI (2002) Linking GIS and water resources management models: an object-oriented method. Environ Model Softw 17:413–425CrossRefGoogle Scholar
  23. Daoyi C, Shahriar S, CéSar CM, L L (2010) Assessment of open source GIS software for water resources management in developing countries. J Hydro-Environ Res 4:253–264CrossRefGoogle Scholar
  24. Deere D, Leusch FD, Humpage A, Cunliffe D, Khan SJ (2017) Hypothetical scenario exercises to improve planning and readiness for drinking water quality management during extreme weather events. Water Res 111:100–108CrossRefGoogle Scholar
  25. Diao K, Wang Z, Burger G, Chen CH, Rauch W, Zhou Y (2014) Speedup of water distribution simulation by domain decomposition. Environ Model Softw 52:253–263CrossRefGoogle Scholar
  26. Dupont A (1979) Hydraulique urbaine, Tome 2. Edition Eyrolles, France, p 484Google Scholar
  27. Eisenbies P, Werey C, Laplaud C (2002) L’enregistrement des défaillances pour améliorer la connaissance des réseaux d’eau potable. Tech Sci Méthodes 6:42–54Google Scholar
  28. Fattoruso G, De Chiara D, De Vito S, La Ferrara V, Di Francia G, Leopardi A, Cocozza E, Viscusi M, Fontana M (2014) Simulation of chlorine decay in drinking water distribution systems: case study of santa sofia network (Southern Italy). Sens Microsyst 467–470. http://link.springer.com/chapter/10.1007%2F978-3-319-00684-0_90
  29. Franchini M, Alvisi S (2010) Model for hydraulic networks with evenly distributed demands along pipes. Civil Eng Environ Syst 27(2):133–153CrossRefGoogle Scholar
  30. Furnass WR, Mounce SR, Boxall JB (2013) Linking distribution system water quality issues to possible causes via hydraulic pathways. Environ Model Softw 40:78–87CrossRefGoogle Scholar
  31. Générale des eaux (2003) EPANET 2.0, Simulation Hydraulique et Qualité pour les Réseaux d’Eau sous Pression, Manuel de l’Utilisateur, p 222Google Scholar
  32. Gomella C (1985) Guide de l’alimentation en eau dans les agglomérations urbaines et rurales Tome I: La distribution. Edition Eyrolles, Paris, p 227Google Scholar
  33. Guidolin M, Burovskiy P, Kapelan Z, Savić DA (2010) CWSNet: an object-oriented toolkit for water distribution system simulations. In: Water distribution system analysis, WDSA2010, Tucson, AZ, USA, 12–15 Sept 2010, p 1694Google Scholar
  34. Gumbo B, Juizo D, Pieter VDZ (2003) Information is a prerequisite for water demand management: experiences from four cities in Southern Africa. Phys Chem Earth 28:827–837CrossRefGoogle Scholar
  35. Jia H, Wei W, Xin K (2008) Hydraulic model for multi-sources reclaimed water pipe network based on EPANET and its applications in Beijing. China. Front Environ Sci Eng China 2(1):57–62CrossRefGoogle Scholar
  36. Janke R, Tryby MC, Robert M (2013) Chapter 2: Protecting water supply critical infrastructure: an overview, p 57. www.springer.comGoogle Scholar
  37. Jun H, Loganathan GV, Kim JH, Park S (2008) Identifying pipes and valves of high importance for efficient operation and maintenance of water distribution systems. Water Resour Manage 22:719–736CrossRefGoogle Scholar
  38. Kanakoudis V, Tsitsifli S, Samaras P, Anastasios Z (2014) Water pipe networks performance assessment: benchmarking eight cases across the EU Mediterranean basin. Water Qual Expo Health.  https://doi.org/10.1007/s12403-014-0113-yCrossRefGoogle Scholar
  39. Karadirek E, Kara S, Yilmaz G, Muhammetoglu A, Muhammetoglu H (2012) Implementation of hydraulic modelling for water-loss reduction through pressure management. Water Resour Manag 26:2555–2568CrossRefGoogle Scholar
  40. Kenneth RF, James PH (2009) Water loss management: conservation option in Florida’s urban water systems. Florida Water Resour J 24–32Google Scholar
  41. Kurek W, Ostfeld A (2013) Multi-objective optimization of water quality, pumps operation, and storage sizing of water distribution systems. J Environ Manage 115:189–197CrossRefGoogle Scholar
  42. Laurini R (1993) Les bases de données en Géomatique. Edition Hermes, Paris, p 339Google Scholar
  43. Loucks DP, Van Beek E (2017) Water resource systems planning and management: an introduction to methods, models, and applications. Springer, New YorkCrossRefGoogle Scholar
  44. Lynn EJ (2013) Chapter 7: GIS and remote sensing applications in modern water resources engineering, p 38. www.springer.com
  45. Martinez F, Hernandez VM, Alonso J, Rao Z, Alvisi S (2007) Optimizing the operation of the Valencia water distribution network. IWA Publishing J Hydroinform 09(1):65–78CrossRefGoogle Scholar
  46. Marunga A, Hoko Z, Kaseke E (2006) Pressure management as a leakage reduction and water demand management tool: the case of the City of Mutare, Zimbabwe. Phy Chem Earth 31:763–770CrossRefGoogle Scholar
  47. Nilufar I, Rehan S, Manuel JR (2013) Optimizing booster chlorination in water distribution networks: a water quality index approach. Environ Monit Assess 185:8035–8050CrossRefGoogle Scholar
  48. Nyerges T (1992) Coupling GIS and spatial analytical models. In: Proceedings of 5th international symposium on spatial data handling, Humanities and Social Sciences Computing Laboratory, University of South Carolina, Columbia, SC, pp 534–543Google Scholar
  49. Padilla SV, Davila QJ (2013) Multi-agent geosimulation for a water distribution system. In: Computing conference (CLEI), XXXIX Latin American, Naiguata, 7–11 Oct 2013, pp 1–12. Print ISBN: 978-1-4799-2957Google Scholar
  50. Panagopoulos GP, Bathrellos GD, Skilodimou HD, Martsouka FA (2012) Mapping urban water demands using multi-criteria analysis and GIS. Water Resour Manage 26:1347–1363CrossRefGoogle Scholar
  51. Pouliot J (1999) Définition d’un cadre géosémantique pour le couplage des modèles prévisionnels de comportement et des SIG-application pour les écosystèmes forestiers” Thèse de Doctorat. Ecole Polytechnique Fédérale de Lausanne, Suisse, p 171Google Scholar
  52. Ramesh LS, Jagadeesh CJ (2012) Simulation of hydraulic parameters in water distribution network using EPANET and GIS. In: International conference on ecological, environmental and biological sciences (ICEEBS’2012) 7–8 Jan 2012, Dubai, pp 350–353Google Scholar
  53. Roozbahani A, Zahraie B, Tabesh M (2013) Integrated risk assessment of urban water supply systems from source to tap. Stoch Env Res Risk Assess 27(4):923–944CrossRefGoogle Scholar
  54. Rossman L (2000) Epanet 2 User’s Manual, Environmental Protection Agency, Cincinnati, USA. http://www.epa.gov/ORD/NRMRL/wswrd/epanet.html. Accessed 1 Mar 2010
  55. Salomons E (2005) DXF2EPA—AutoCad DXF file conversion utility for EPANET, Notice d’utilisationGoogle Scholar
  56. Sauvagnargues-Lesage S, Ayral PA (2009) Systèmes d’Information Géographique: outil d’aide à la gestion territoriale. Techniques de l’ingénieur, Référence, p H7415Google Scholar
  57. Shafiqul IM, Rehan S, Manuel JR, Homayoun N, Alex F, Mina H (2013) Evaluating water quality failure potential in water distribution systems: a fuzzy-TOPSIS-OWA-based methodology. Water Resour Manag 27:2195–2216.  https://doi.org/10.1007/s11269-013-0283-6CrossRefGoogle Scholar
  58. Sitzenfrei R, Möderl M, Rauch W (2013) Automatic generation of water distribution systems based on GIS data. Environ Model Softw 47:138–147CrossRefGoogle Scholar
  59. Stefan HM, Roger SP, Clive AW (2000) Calibration and comparison of chlorine decay models for a test water distribution system. Water Resour 34(8):2301–2309Google Scholar
  60. Tabesh M, Asadiyani Yekta AH, Burrows R (2009) An integrated model to evaluate losses in water distribution systems. Water Resour Manag 23:477–492CrossRefGoogle Scholar
  61. Tabesh M, Delavar MR, Delkhah A (2010) Use of geospatial information system based tool for renovation and rehabilitation of water distribution systems. Int J Environ Sci Technol 7(1):47–58CrossRefGoogle Scholar
  62. Tabesh M, Jamasb RM (2011) Calibration of water distribution hydraulic models: a comparison between pressure dependent and demand driven analyses. Urban Water Journal 8(2):93–102CrossRefGoogle Scholar
  63. Tabesh M, Saber H (2012) A prioritization model for rehabilitation of water distribution networks using GIS. Water Resour Manag 26:225–241CrossRefGoogle Scholar
  64. Tena-Chollet F, Sauvagnargues-Lesage S, Thierion V, Ayral PA (2010) Systèmes d’information géographique: mise en œuvre. Techniques de l’ingénieur, Référence, p H7416Google Scholar
  65. Yu T, Liya M, Xiaohui L, Yunzhong J (2010) Construction of water supply pipe network based on GIS and EPANET model in Fangcun District of Guangzhou, Geoscience, 2010 Second IITA International conference on and remote sensing, vol 2 (IITA-GRS). Qingdao, 28–31 Aug 2010, pp 268–271. Print ISBN: 978-1-4244-8514-7, INSPEC Accession Number: 11594527Google Scholar
  66. Torres JM, Brumbelow K, Guikema SD (2009) Risk classification and uncertainty propagation for virtual water distribution systems. Reliab Eng Syst Saf 94:1259–1273CrossRefGoogle Scholar
  67. Vairavamoorthy JY, Harshal MG, Sunil DG (2007) IRA-WDS: a GIS-based risk analysis tool for water distribution systems. Environ Model Softw 22:951–965CrossRefGoogle Scholar
  68. Valiron F (1994) Mémento du gestionnaire de l’alimentation en eau potable et de l’assainissement, Tome 1, 2, 3. Edition Lavoisier, Paris, p 1262Google Scholar
  69. Worm GIM, Der Helm AWC, Lapikas T, Schagen KM, Rietveld LC (2010) Integration of models, data management, interfaces and training support in a drinking water treatment plant simulator. Environ Model Softw 25:677–683CrossRefGoogle Scholar
  70. Yong L, Xiaojian L, Xiaosheng Q, Huaicheng G, Yajuan Y, Jinfeng W, Guozhu M (2007) An integrated GIS-based analysis system for land-use management of lake areas in urban fringe. Landscape Urban Plann 82:233–246CrossRefGoogle Scholar
  71. Zhang T (2006) The application of GIS and CARE-W on water distribution networks in Skärholmen pressure zone. In: Pipeline technology 2006 conference, Stockholm, SwedenGoogle Scholar
  72. Wu ZY, Wang RH, Walski TM, Yang SY, Bowdler D, Christopher, Baggett C (2006) Efficient pressure dependent demand model for large water distribution system analysis. Communication présentée au 8th Annual International Symposium on Water Distribution System Analysis, Cincinnati, Ohio, 27–30 Aug 2006Google Scholar
  73. Zhou N, Westrich B, Jiang S, Wang Y (2011) A coupling simulation based on a hydrodynamics and water quality model of the Pearl River Delta, China. J Hydrol 396:267–276CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Chérifa Abdelbaki
    • 1
    • 2
    Email author
  • Bénina Touaibia
    • 3
  • Abdelhadi Ammari
    • 4
  • Hacène Mahmoudi
    • 5
  • Mattheus Goosen
    • 6
  1. 1.Department of Hydraulics, Faculty of TechnologyAbouBakr Belkaid UniversityTlemcenAlgeria
  2. 2.EOLE LaboratoryAbouBakr Belkaid UniversityTlemcenAlgeria
  3. 3.MVRE LaboratoryHigher National School of HydraulicsBlidaAlgeria
  4. 4.GEE LaboratoryHigher National School of HydraulicsBlidaAlgeria
  5. 5.Faculty of SciencesUniversity Hassiba Ben BoualiChlefAlgeria
  6. 6.Office of Research and Graduate StudiesAlfaisal UniversityRiyadhSaudi Arabia

Personalised recommendations