Skip to main content

Using Geospatial Technologies in Mapping the Distribution and Quality of Ecosystems

Part of the Key Challenges in Geography book series (KCHGE)

Abstract

In the context of present environmental changes, human society is continuously looking for ways to evaluate the status of ecosystems and determine human-induced modifications on their structure and functionality. A clear overview of ecosystems is fundamental in choosing the appropriate measures in our search for sustainability and improving the quality of life. The aim of the chapter is therefore to underline how geography can respond to the need of mapping the distribution and quality of ecosystems. This is easily done by using geospatial technologies, helping to a better understanding of the relation between the spatial distribution and management of ecosystems. The chapter presents the main types of data required by geospatial technologies and the data sources for mapping ecosystems. Challenges in gathering reliable data are also presented besides various methods of overcoming the difficulties. There is a strong emphasis on differentiating the available geospatial technologies for mapping the distribution of ecosystems and for representing their quality. The use of different geospatial technologies in mapping the distribution and quality of specific ecosystems was highlighted through case studies of urban ecosystems, water bodies and forests. We also aimed to identify the causes that determined certain ecosystem approaches, and the potential of geospatial technologies in providing to geographers and other scholars the possibility to explore processes from the past, present, or modeling the future. As geographical assessments require a “cause and effect” approach, we aimed to emphasize how geospatial technologies are used in identifying the causes that determined certain planning policies, shaping the current geographical landscape, the effects of these policies, and the future outcomes of newly implemented or proposed planning policies. The current potential of geospatial technologies gives access to complex diachronic analysis, providing the geographers and other scholars the possibility to explore the various processes that occur in the geographical landscape. The chapter demonstrates how geography and geospatial technologies can help policy and decision makers, local administrations, or stakeholders evaluate the distribution and quality of specific ecosystems.

Keywords

  • Geospatial technologies
  • Mapping
  • Ecosystems
  • Environmental changes

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-04750-4_3
  • Chapter length: 23 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   149.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-04750-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   199.99
Price excludes VAT (USA)
Fig. 3.1
Fig. 3.2
Fig. 3.3
Fig. 3.4
Fig. 3.5
Fig. 3.6

References

  • Al-Fahdawi AA, Rabee AM, Al-Hirmizy SM (2015) Water quality monitoring of Al-Habbaniyah Lake using remote sensing and in situ measurements. Environ Monit Assess 187(6):367–378

    CrossRef  Google Scholar 

  • American Association for the Advancement of Science (2017) What are geospatial technologies. https://www.aaas.org/content/what-are-geospatial-technologies

  • Angradi TR, Launspach JJ, Bolgrien DW, Bellinger BJ, Starry MA, Hoffman JC, Trebitz AS, Sierszen ME, Hollenhorst TP (2016) Mapping ecosystem service indicators in a Great Lakes estuarine Area of Concern. J Great Lakes Res 42(3):717–727

    CrossRef  Google Scholar 

  • Badar B, Romshoo SA (2008) Assessing the pollution load of Dal lake using geospatial tools. In: Sengupta MDR (ed) Proceedings of Taal 2007: The 12th World Lake Conference, pp 668–679

    Google Scholar 

  • Badiu D, Chincea I, Ioja C, Niculae M, Nita M, Patroescu M, Vanau G (2014) The diversity of urban green infrastructures in a former industrial city in Romania. Case study–Resita. In: 14th SGEM geo conference on ecology, economics, education and legislation 2 (SGEM2014 conference proceedings, June 19–25, 2014, vol 2, 703–710 pp. ISBN 978-619-7105-18-6/ISSN 1314-2704

    Google Scholar 

  • Bhatta B, Saraswati S, Bandyopadhyay D (2010) Urban sprawl measurement from remote sensing data. Appl Geogr 30(4):731–740

    CrossRef  Google Scholar 

  • Bishop MP, Dobreva ID, Houser C (2015) Geospatial science and technology for understanding the complexities of the critical zone. In: Giardino J, Houser C (eds) Principles and dynamics of the critical zone. Elsevier

    Google Scholar 

  • Bishop MP, James LA, Shroder JF Jr, Walsh SJ (2012) Geospatial technologies and digital geomorphological mapping: concepts, issues and research. Geomorphology 137:5–26

    CrossRef  Google Scholar 

  • Blasi C, Capotorti G, Alós Ortí MM, Anzellotti I, Attorre F, Azzella MM, Carli E, Copiz R, Garfì V, Manes F, Marando F, Marchetti M, Mollo B, Zavattero L (2017) Ecosystem mapping for the implementation of the European Biodiversity Strategy at the national level: the case of Italy. Environ Sci Policy 78:173–184

    CrossRef  Google Scholar 

  • Bossard M, Feranec J, Otahel J (2000) CORINE land cover technical guide: Addendum 2000

    Google Scholar 

  • Burkhard B, Maes J (2017) Mapping ecosystem services. Pensoft Publishers, Sofia

    CrossRef  Google Scholar 

  • Cartus O, Santoro M, Kellndorfer J (2012) Mapping forest aboveground biomass in the Northeastern United States with ALOS PALSAR dual-polarization L-band. Remote Sens Environ 124:466–478

    CrossRef  Google Scholar 

  • Chazdon RL, Brancalion PH, Laestadius L, Bennett-Curry A, Buckingham K, Kumar C, Moll-Rocek J, Vieira ICG, Wilson SJ (2016) When is a forest a forest? Forest concepts and definitions in the era of forest and landscape restoration. Ambio 45(5):538–550

    CrossRef  Google Scholar 

  • Chen JM, Liu J, Leblanc SG, Lacaze R, Roujean JL (2003) Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption. Remote Sens Environ 84(4):516–525

    CrossRef  Google Scholar 

  • Cucu A, Ciocănea CM, Onose DA (2011) Distribution of urban green spaces—an indicator of topophobia—topophilia of urban residential neighborhoods. Case Study of 5th District of Bucharest, Romania. Forum geografic Studii şi cercetări de geografie şi protecţia mediului 10(2):276–286

    Google Scholar 

  • Cushing JB, Parker GG, Ford ED, Stallman C, Nadkarni NM (2008) The international canopy network: a pathway for interdisciplinary exchange of scientific information on forest canopies

    Google Scholar 

  • Cvejić R, Eler K, Pintar M, Železnikar Š, Haase D, Kabisch N, Strohbach M (2015) A typology of urban green spaces, ecosystem services, provisioning services and demands. GREEN SURGE

    Google Scholar 

  • Dong J, Xiao X, Sheldon S, Biradar C, Zhang G, Duong ND, Hazarika M, Wikantika K, Takeuhci W, Moore B III (2014) A 50-m forest cover map in Southeast Asia from ALOS/PALSAR and its application on forest fragmentation assessment. PLoS ONE 9(1):e85801

    CrossRef  Google Scholar 

  • Duncan BN, Prados AI, Lamsal LN, Liu Y, Streets DG, Gupta P, Hilsenrath E, Kahn RA, Nielsen JE, Beyersdorf AJ (2014) Satellite data of atmospheric pollution for US air quality applications: examples of applications, summary of data end-user resources, answers to FAQs, and common mistakes to avoid. Atmos Environ 94:647–662

    CrossRef  Google Scholar 

  • EC (2013) Decision No 1386/2013/EU of the European Parliament and of the Council of 20 November 2013 on a General Union Environment Action Program to 2020 ‘Living well, within the limits of our planet’. Eur Comm Off J Eur Union. L 354

    Google Scholar 

  • Edsall RM, Barbour L, Hoffman J (2015) Complementary methods for citizen mapping of ecosystem services: comparing digital and analog representations. In: Robbi Sluter C, Madureira Cruz CB, Leal de Menezes PM (eds) Cartography—maps connecting the world: 27th international cartographic conference 2015—ICC2015. Springer International Publishing, Cham, pp 295–307. https://doi.org/10.1007/978-3-319-17738-0_20

    CrossRef  Google Scholar 

  • EEA (2016) High resolution layer: permanent water bodies (PWB)

    Google Scholar 

  • Ershov DV, Isaev AC, Lukina NV, Gavrilyuk EA, Koroleva NV (2016) Assessment of biodiversity in Central Federal District using satellite-based maps of terrestrial ecosystems. Contemp Probl Ecol 9(7):791–804. https://doi.org/10.1134/s1995425516070040

    CrossRef  Google Scholar 

  • FAO (2012) FRA 2015 terms and definitions. The forest resources assessment (FRA) working paper series. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Feranec J, Hazeu G, Christensen S, Jaffrain G (2007) Corine land cover change detection in Europe (case studies of the Netherlands and Slovakia). Land Use Policy 24(1):234–247

    CrossRef  Google Scholar 

  • Feranec J, Jaffrain G, Soukup T, Hazeu G (2010) Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Appl Geogr 30(1):19–35

    CrossRef  Google Scholar 

  • Fishman J, Al-Saadi JA, Creilson JK, Bowman KW, Burrows JP, Richter A, Chance KV, Edwards DP, Martin RV, Morris GA (2008) Remote sensing of tropospheric pollution from space. Bull Am Meteor Soc 89(6):805–821

    CrossRef  Google Scholar 

  • Gao J, Lv S, Zheng Z, Liu J, Zou C, Yang Z, Chen L, Fu B, Su C, Li W (2015) Classification and research methods of ecosystem. In: Li W (ed) Contemporary ecology research in China. Springer, Berlin, Heidelberg, pp 109–131. https://doi.org/10.1007/978-3-662-48376-3_6

    CrossRef  Google Scholar 

  • Gao H, Wang L, Jing L, Xu J (2016) An effective modified water extraction method for Landsat-8 OLI imagery of mountainous plateau regions. In: IOP conference series: earth and environmental science, vol 1. https://doi.org/10.1088/1755-1315/34/1/012010

    CrossRef  Google Scholar 

  • Gatrell JD, Jensen RR (2008) Sociospatial applications of remote sensing in urban environments. Geogr Compass 2(3):728–743

    CrossRef  Google Scholar 

  • Gavrilidis A, Alexandru Grădinaru S, Raluca Iojă IC, Cârstea E, Maria Pătru-Stupariu I (2015) Land use and land cover dynamics in the periurban area of an industrialized East-European city. An overview of the last 100 years. Carpathian J Earth Environ Sci 10:29–38

    Google Scholar 

  • Gavrilidis AA, Ciocănea CM, Niţă MR, Onose DA, Năstase II (2016) Urban landscape quality index–planning tool for evaluating urban landscapes and improving the quality of life. Procedia Environ Sci 32:155–167

    CrossRef  Google Scholar 

  • Gavrilidis AA, Niță MR, Onose DA, Badiu DL, Năstase II (2017) Methodological framework for urban sprawl control through sustainable planning of urban green infrastructure. Ecological Indicators

    Google Scholar 

  • Grădinaru SR, Kienast F, Psomas A (2017) Using multi-seasonal Landsat imagery for rapid identification of abandoned land in areas affected by urban sprawl. Ecological Indicators

    Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. Proc Natl Acad Sci 107(19):8650–8655

    CrossRef  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova S, Tyukavina A, Thau D, Stehman S, Goetz S, Loveland T (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853

    CrossRef  Google Scholar 

  • Hestir EL, Brando VE, Bresciani M, Giardino C, Matta E, Villa P, Dekker AG (2015) Measuring freshwater aquatic ecosystems: the need for a hyperspectral global mapping satellite mission. Remote Sens Environ 167:181–195

    CrossRef  Google Scholar 

  • Inostroza L (2017) Informal urban development in Latin American urban peripheries. Spatial assessment in Bogotá, Lima and Santiago de Chile. Landscape Urban Plann 165:267–279

    CrossRef  Google Scholar 

  • Iojă I, Onose D, Nita M, Vanau G, Patroescu M, Gavrilidis A, Saghin I, Zarea R (2011) The conversion of agricultural lands into built surfaces in Romania. Recent Res Urban Sustain Green Dev 6:115–120

    Google Scholar 

  • Iojă CI, Grădinaru SR, Onose DA, Vânău GO, Tudor AC (2014a) The potential of school green areas to improve urban green connectivity and multifunctionality. Urban Forest Urban Greening 13(4):704–713

    CrossRef  Google Scholar 

  • Iojă CI, Niţă MR, Vânău GO, Onose DA, Gavrilidis AA (2014b) Using multi-criteria analysis for the identification of spatial land-use conflicts in the Bucharest Metropolitan Area. Ecol Ind 42:112–121

    CrossRef  Google Scholar 

  • Jaeger JAG, Schwick C (2014) Improving the measurement of urban sprawl: weighted urban proliferation (WUP) and its application to Switzerland. Ecol Ind 38:294–308

    CrossRef  Google Scholar 

  • Kleinn C (2001) A cautionary note on the minimum crown cover criterion in forest definitions. Can J For Res 31(2):350–356

    CrossRef  Google Scholar 

  • Langanke T (2013) GIO land (GMES/Copernicus initial operations land) high resolution layers (HRLs)—summary of product specifications. European Environment Agency

    Google Scholar 

  • Mathieu R, Freeman C, Aryal J (2007) Mapping private gardens in urban areas using object-oriented techniques and very high-resolution satellite imagery. Landscape Urban Plann 81(3):179–192

    CrossRef  Google Scholar 

  • McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1432–1452

    CrossRef  Google Scholar 

  • Morales-Barquero L, Borrego A, Skutsch M, Kleinn C, Healey JR (2015) Identification and quantification of drivers of forest degradation in tropical dry forests: a case study in Western Mexico. Land Use Policy 49:296–309

    CrossRef  Google Scholar 

  • Mura M, McRoberts RE, Chirici G, Marchetti M (2015) Estimating and mapping forest structural diversity using airborne laser scanning data. Remote Sens Environ 170:133–142

    CrossRef  Google Scholar 

  • Nainggolan D, Termansen MFL, Hubacek K, Reed MS, de Vente J, Boix-Fayos C (2012) What does the future hold for semi-arid Mediterranean agro-ecosystems? Exploring cellular automata and agent-based trajectories of future land-use change. Appl Geogr 35 (1–2):474–490

    CrossRef  Google Scholar 

  • Niţă MR, Iojă IC, Rozylowicz L, Onose DA, Tudor AC (2013) Land use consequences of the evolution of cemeteries in the Bucharest Metropolitan Area. J Environ Plann Manag (ahead-of-print):1–17

    Google Scholar 

  • Niță MR, Năstase II, Badiu DL, Onose DA, Gavrilidis AA (2018) Evaluating urban forests connectivity in relation to urban functions in Romanian cities. Carpathian J Earth Environ Sci 13:291–299. https://doi.org/10.26471/cjees/2018/013/025

    CrossRef  Google Scholar 

  • Pagella TF, Sinclair FL (2014) Development and use of a typology of mapping tools to assess their fitness for supporting management of ecosystem service provision. Landscape Ecol 29(3):383–399. https://doi.org/10.1007/s10980-013-9983-9

    CrossRef  Google Scholar 

  • Pătru-Stupariu I, Stupariu M-S, Tudor CA, Grădinaru SR, Gavrilidis A, Kienast F, Hersperger AM (2015) Landscape fragmentation in Romania’s Southern Carpathians: testing a European assessment with local data. Landscape Urban Plann 143:1–8

    CrossRef  Google Scholar 

  • Pekkarinen A, Reithmaier L, Strobl P (2009) Pan-European forest/non-forest mapping with Landsat ETM+ and CORINE Land Cover 2000 data. ISPRS J Photogrammetry Remote Sens 64(2):171–183

    CrossRef  Google Scholar 

  • Pfeifer M, Kor L, Nilus R, Turner E, Cusack J, Lysenko I, Khoo M, Chey V, Chung A, Ewers R (2016) Mapping the structure of Borneo’s tropical forests across a degradation gradient. Remote Sens Environ 176:84–97

    CrossRef  Google Scholar 

  • Pinheiro T, Escada M, Valeriano D, Hostert P, Gollnow F, Müller H (2016) Forest degradation associated with logging frontier expansion in the Amazon: the BR-163 region in Southwestern Pará, Brazil. Earth Interact 20(17):1–26

    CrossRef  Google Scholar 

  • Pukkala T (2013) Multi-objective forest planning, vol 6. Springer Science & Business Media

    Google Scholar 

  • Remmel TK, Perera AH (2017) Mapping forest landscapes: overview and a primer. In: Remmel TK, Perera AH (eds) Mapping forest landscape patterns. Springer, New York, pp 1–62. https://doi.org/10.1007/978-1-4939-7331-6_1

    CrossRef  Google Scholar 

  • Roussel F, Schulp CJE, Verburg PH, van Teeffelen AJA (2017) Testing the applicability of ecosystem services mapping methods for peri-urban contexts: a case study for Paris. Ecol Ind 83:504–514

    CrossRef  Google Scholar 

  • Salata S, Ronchi S, Arcidiacono A (2017) Mapping air filtering in urban areas. A land use regression model for ecosystem services assessment in planning. Ecosystem Services

    Google Scholar 

  • Sexton JO, Song X-P, Feng M, Noojipady P, Anand A, Huang C, Kim D-H, Collins KM, Channan S, DiMiceli C (2013) Global, 30-m resolution continuous fields of tree cover: Landsat-based rescaling of MODIS vegetation continuous fields with lidar-based estimates of error. Int J Digital Earth 6(5):427–448

    CrossRef  Google Scholar 

  • Shimada M, Itoh T, Motooka T, Watanabe M, Shiraishi T, Thapa R, Lucas R (2014) New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens Environ 155:13–31

    CrossRef  Google Scholar 

  • Souza CM Jr, Siqueira JV, Sales MH, Fonseca AV, Ribeiro JG, Numata I, Cochrane MA, Barber CP, Roberts DA, Barlow J (2013) Ten-year Landsat classification of deforestation and forest degradation in the Brazilian Amazon. Remote Sens 5(11):5493–5513

    CrossRef  Google Scholar 

  • Sperandelli DI, Dupas FA, Dias Pons NA (2013) Dynamics of urban sprawl, vacant land, and green spaces on the metropolitan fringe of São Paulo, Brazil. J Urban Plann Dev 139(4):274–279

    CrossRef  Google Scholar 

  • Streets DG, Canty T, Carmichael GR, de Foy B, Dickerson RR, Duncan BN, Edwards DP, Haynes JA, Henze DK, Houyoux MR (2013) Emissions estimation from satellite retrievals: a review of current capability. Atmos Environ 77:1011–1042

    CrossRef  Google Scholar 

  • Teodosiu M, Bouriaud OB (2012) Deadwood specific density and its influential factors: a case study from a pure Norway spruce old-growth forest in the Eastern Carpathians. For Ecol Manage 283:77–85

    CrossRef  Google Scholar 

  • Thapa RB, Itoh T, Shimada M, Watanabe M, Takeshi M, Shiraishi T (2014) Evaluation of ALOS PALSAR sensitivity for characterizing natural forest cover in wider tropical areas. Remote Sens Environ 155:32–41

    CrossRef  Google Scholar 

  • Thompson JR, Lambert KF, Foster DR, Broadbent EN, Blumstein M, Almeyda Zambrano AM, Fan Y (2016) The consequences of four land-use scenarios for forest ecosystems and the services they provide. Ecosphere 7(10)

    CrossRef  Google Scholar 

  • Turner D (2010) Remote sensing of chlorophyll a concentrations to support the Deschutes Basin lake and reservoir TMDLs. Technical Report to EPA

    Google Scholar 

  • UN (1992) Convention on biological diversity (Ch_XXVII_8, Chapter XXVII), vol 2. Environment, United Nations. https://treaties.un.org/doc/Treaties/1992/06/19920605%2008-44%20PM/Ch_XXVII_08p.pdf. Accessed 20 Nov 2017

  • United States Geological Survey (2017) What is remote sensing and what is it used for? https://www.usgs.gov/faqs/what-remote-sensing-and-what-it-used-0?qt-news_science_products=7#qt-news_science_products

  • Wang J, Hu Z, Chen Y, Chen Z, Xu S (2013) Contamination characteristics and possible sources of PM10 and PM2. 5 in different functional areas of Shanghai. China Atmos Environ 68:221–229

    CrossRef  Google Scholar 

  • Whittle M, Quegan S, Uryu Y, Stüewe M, Yulianto K (2012) Detection of tropical deforestation using ALOS-PALSAR: a Sumatran case study. Remote Sens Environ 124:83–98

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Alexandru Gavrilidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Verify currency and authenticity via CrossMark

Cite this chapter

Niță, MR. et al. (2019). Using Geospatial Technologies in Mapping the Distribution and Quality of Ecosystems. In: Koutsopoulos, K., de Miguel González, R., Donert, K. (eds) Geospatial Challenges in the 21st Century. Key Challenges in Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-04750-4_3

Download citation