Skip to main content

Multihazard Risk Assessment from Qualitative Methods to Bayesian Networks: Reviewing Recent Contributions and Exploring New Perspectives

  • Chapter
  • First Online:
  • 1009 Accesses

Part of the book series: Key Challenges in Geography ((KCHGE))

Abstract

Natural processes are interacting components of natural systems. Under certain circumstances, they can be transformed into threats for humanity, environment, and development. Examples such as the 2006 Pangandaran earthquake–tsunami and the 2011 Tohoku earthquake–tsunami–flood–nuclear catastrophe point out the necessity for an integrated multihazard risk assessment tool. This paper presents the critical steps and improvements in approaches to multihazard risk management. From the first qualitative, semiquantitative techniques with which risk is calculated through individual processes to more powerful techniques which try to capture and evaluate the interactions (trigger, cascade effect) among the natural hazards, such as Event Tree (ET) and Bayesian Networks (BNs). Especially Bayesian Networks and recently, their extensions as Dynamic Bayesian Networks (DBNs) and Hybrid Bayesian Networks (HBNs) offer a great opportunity for a more realistic and flexible multihazard risk assessment.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguilera PA, Fernández A, Fernández R, Rumí R, Salmerón A (2011) Bayesian networks in environmental modelling. Environ Model Softw 26(12):1376–1388

    Article  Google Scholar 

  • Aguilera PA, Fernández A, Reche F, Rumí R (2010) Hybrid Bayesian network classifiers: application to species distribution models. Environ Model Softw 25(12):1630–1639. https://doi.org/10.1016/j.envsoft.2010.04.016

    Article  Google Scholar 

  • Apivatanagul P, Davidson R, Blanton B, Nozick L (2011) Long-term regional hurricane hazard analysis for wind and storm surge. Coast Eng 58(6):499–509. https://doi.org/10.1016/j.coastaleng.2011.01.015

    Article  Google Scholar 

  • Arnold M, Dilley M, Deichmann U, Chen RS, Lerner-Lam AL (2005) Natural disaster hotspots: a global risk analysis. Disaster Risk Manag 5:1–145

    Google Scholar 

  • Asimakopoulou E, Bessis N (2011) Towards an integrated multi-hazard prevention assessment for community threats

    Google Scholar 

  • Aspinall WP, Woo G (2014) Santorini unrest 2011–2012: an immediate Bayesian belief network analysis of eruption scenario probabilities for urgent decision support under uncertainty. J Appl Volcanol 3(1):1–12

    Article  Google Scholar 

  • Bartel P, Muller J (2007) Horn of Africa natural hazard probability and risk analysis. US Department of State–Humanitarian Information Unit

    Google Scholar 

  • Bayraktarli YY (2006) Application of Bayesian probabilistic networks for liquefaction of soil. Paper presented at the 6th international Ph.D. symposium in civil engineering

    Google Scholar 

  • Bayraktarli YY, Ulfkjaer J.-P., Yazgan, U., & Faber, M. H. (2005). On the application of Bayesian probabilistic networks for earthquake risk management. Paper presented at the 9th international conference on structural safety and reliability, Italy, Rome

    Google Scholar 

  • Bell R, Glade T (2004) Multi-hazard analysis in natural risk assessments

    Google Scholar 

  • Bell RG, Reese S, King AB (2007) Regional RiskScape: a multi-hazard loss modelling tool. Proc Coastal Communities Nat Disasters 17:18

    Google Scholar 

  • Ben‐Gal I (2007) Bayesian networks. In: Encyclopedia of statistics in quality and reliability

    Google Scholar 

  • Bennett JE, Racine-Poon A, Wakefield JC (1996) MCMC for nonlinear hierarchical models. In: Markov chain Monte Carlo in practice, Springer, pp 339–357

    Google Scholar 

  • Blaser L, Ohrnberger M, Riggelsen C, Babeyko A, Scherbaum F (2011) Bayesian networks for tsunami early warning. Geophys J Int 185(3):1431–1443

    Article  Google Scholar 

  • Buzna L, Peters K, Ammoser H, Kühnert C, Helbing D (2007) Efficient response to cascading disaster spreading. Phys Rev E 75(5):056107

    Article  Google Scholar 

  • Cai B, Liu Y, Liu Z, Tian X, Zhang Y, Ji R (2013) Application of Bayesian networks in quantitative risk assessment of subsea blowout preventer operations. Risk Anal 33(7):1293–1311

    Article  Google Scholar 

  • CAPRA (2008–2012) CAPRA initiative: integrating disaster risk information into development policies and programs in Latin America and the Caribbean. Probabilistic Risk Assessment (CAPRA) Initiative

    Google Scholar 

  • Cardona OD, Ordaz Schroder MG, Reinoso E, Yamín L, Barbat Barbat HA (2010) Comprehensive approach for probabilistic risk assessment (CAPRA): international initiative for disaster risk management effectiveness

    Google Scholar 

  • Carpignano A, Golia E, Di Mauro C, Bouchon S, Nordvik JP (2009) A methodological approach for the definition of multi-risk maps at regional level: first application. J Risk Res 12(3–4):513–534

    Article  Google Scholar 

  • Carrara A (1993) Uncertainty in evaluating landslide hazard and risk. In: Prediction and perception of natural hazards. Springer, pp 101–109

    Google Scholar 

  • Castillo E, Gutiérrez JM, Hadi AS (1998) Modeling probabilistic networks of discrete and continuous variables. J Multivar Anal 64(1):48–65

    Article  Google Scholar 

  • Charniak E (1991) Bayesian networks without tears. AI Mag 12(4):50

    Google Scholar 

  • Chen SH, Pollino CA (2012) Good practice in Bayesian network modelling. Environ Model Softw 37:134–145. https://doi.org/10.1016/j.envsoft.2012.03.012

    Article  Google Scholar 

  • Chib S (2001) Markov chain Monte Carlo methods: computation and inference. In: Handbook of econometrics, vol 5, pp 3569–3649

    Chapter  Google Scholar 

  • Chongfu H (1996) Fuzzy risk assessment of urban natural hazards. Fuzzy Sets Syst 83(2):271–282

    Article  Google Scholar 

  • Ciscar JC, Feyen L, Soria A, Lavalle C, Raes F, Perry M, Dosio A (2014) Climate impacts in Europe the JRC PESETA II project

    Google Scholar 

  • Cobb BR, Rumi R, Salmerón A (2007) Bayesian network models with discrete and continuous variables. In: Advances in probabilistic graphical models. Springer, pp 81–102

    Google Scholar 

  • Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Smith JT (2013) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Env 73(2):209–263. https://doi.org/10.1007/s10064-013-0538-8

    Article  Google Scholar 

  • Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64(1):65–87

    Article  Google Scholar 

  • De Pippo T, Donadio C, Pennetta M, Petrosino C, Terlizzi F, Valente A (2008) Coastal hazard assessment and mapping in Northern Campania, Italy. Geomorphology 97(3):451–466

    Article  Google Scholar 

  • De Pippo T, Donadio C, Pennetta M, Terlizzi F, Valente A (2009) Application of a method to assess coastal hazard: the cliffs of the Sorrento Peninsula and Capri (southern Italy). Geol Soc London Spec Publ 322(1):189–204

    Article  Google Scholar 

  • Delmonaco G, Margottini C, Spizzichino D (2006) ARMONIA methodology for multi-risk assessment and the harmonisation of different natural risk maps. Deliverable 3.1.1, ARMONIA

    Google Scholar 

  • Dlamini WM (2011) Application of Bayesian networks for fire risk mapping using GIS and remote sensing data. GeoJournal 76(3):283–296

    Article  Google Scholar 

  • Dragicevic S, Filipovic D, Kostadinov S, Ristic R, Novkovic I, Zivkovic N et al. (2011) Natural hazard assessment for land-use planning in Serbia. Int J Environ Res 5(2):371–380

    Google Scholar 

  • Durham K (2003) Treating the risks in Cairns. Nat Hazards 30(2):251–261

    Article  Google Scholar 

  • Einstein H, Sousa R, Karam K, Manzella I, Kveldsvik V (2010) Rock slopes from mechanics to decision making. Chapter 1:3–13

    Google Scholar 

  • El Morjani Zel A, Ebener S, Boos J, Abdel Ghaffar E, Musani A (2007) Modelling the spatial distribution of five natural hazards in the context of the WHO/EMRO atlas of disaster risk as a step towards the reduction of the health impact related to disasters. Int J Health Geogr 6:8. https://doi.org/10.1186/1476-072x-6-8

    Article  Google Scholar 

  • European (2011) Risk assessment and mapping guidelines for disaster management

    Google Scholar 

  • Faes C, Ormerod JT, Wand MP (2011) Variational Bayesian inference for parametric and nonparametric regression with missing data. J Am Stat Assoc 106(495)

    Article  Google Scholar 

  • Fall M, Azzam R, Noubactep C (2006) A multi-method approach to study the stability of natural slopes and landslide susceptibility mapping. Eng Geol 82(4):241–263. https://doi.org/10.1016/j.enggeo.2005.11.007

    Article  Google Scholar 

  • Fausto Guzzetti AC, Cardinali M, Reichenbach P (1997) <Landslide hazard evaluation_a review of current techniques and_10032014.pdf>

    Google Scholar 

  • FEMA (2011) Multi-hazard loss estimation methodology: flood model. HAZUS-MH. Technical manual. U.S. Department of Homeland Security, Federal Emergency Management Agency

    Google Scholar 

  • Fenton N, Littlewood B, Neil M, Strigini L, Wright D, Courtois P-J (1997) Bayesian belief network model for the safety assessment of nuclear computer-based systems

    Google Scholar 

  • Fragiadakis M, Christodoulou SE (2014) Seismic reliability assessment of urban water networks. Earthquake Eng Struct Dynam 43(3):357–374. https://doi.org/10.1002/eqe.2348

    Article  Google Scholar 

  • Friedman N, Goldszmidt M (1996) Building classifiers using Bayesian networks

    Google Scholar 

  • Frigerio S, van Westen CJ (2010) RiskCity and WebRiskCity: data collection, display, and dissemination in a multi-risk training package. Cartography Geogr Inf Sci 37(2):119–135

    Article  Google Scholar 

  • Garcia-Aristizabal A, Selva J, Fujita E (2013a) Integration of stochastic models for long-term eruption forecasting into a Bayesian event tree scheme: a basis method to estimate the probability of volcanic unrest. Bull Volc 75(2):1–13

    Google Scholar 

  • Garcia-Aristizabal A, Selva J, Fujita E (2013b) Integration of stochastic models for long-term eruption forecasting into a Bayesian event tree scheme: a basis method to estimate the probability of volcanic unrest. Bull Volcanol 75(2). https://doi.org/10.1007/s00445-013-0689-2

  • García-Herrero S, Mariscal M, Gutiérrez JM, Toca-Otero A (2013) Bayesian network analysis of safety culture and organizational culture in a nuclear power plant. Saf Sci 53:82–95

    Article  Google Scholar 

  • Ghahramani Z (1998) Learning dynamic Bayesian networks. In: Adaptive processing of sequences and data structures. Springer, pp 168–197

    Google Scholar 

  • GIS, p. e. a. r. a. l. B. n. t. a., Grêt-Regamey A, Straub D (2006) Spatially explicit avalanche risk assessment linking Bayesian networks to a GIS. Nat Hazards Earth Syst Sci 6(6):911–926

    Google Scholar 

  • Glade T (2012) Multi-hazard exposure analyses with multirisk

    Google Scholar 

  • Goodchild A, Jessup E, McCormack E, Andreoli D, Rose S, Ta C, Ivanov B (2009) Development and analysis of a GIS-based statewide freight data flow network. Washington State Department of Transportation

    Google Scholar 

  • Granger K, Jones TG, Leiba M, Scott G (1999) Community risk in Cairns: a multi-hazard risk assessment. Aust J Emerg Manag 14(2):25

    Google Scholar 

  • Greiving S, Fleischhauer M (2012) National climate change adaptation strategies of European states from a spatial planning and development perspective. Eur Plan Stud 20(1):27–48

    Article  Google Scholar 

  • Greiving S, Fleischhauer M, Lückenkötter J (2006) A methodology for an integrated risk assessment of spatially relevant hazards. J Environ Plann Manage 49(1):1–19

    Article  Google Scholar 

  • Gutierrez BT, Plant NG, Thieler ER (2011) A Bayesian network to predict coastal vulnerability to sea level rise. J Geophys Res Earth Surface 116(F2)

    Google Scholar 

  • Hapke C, Plant N (2010) Predicting coastal cliff erosion using a Bayesian probabilistic model. Mar Geol 278(1):140–149

    Article  Google Scholar 

  • Heinl M, Neuenschwander A, Sliva J, Vanderpost C (2006) Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Landscape Ecol 21(5):699–709. https://doi.org/10.1007/s10980-005-5243-y

    Article  Google Scholar 

  • Hong E-S, Lee I-M, Shin H-S, Nam S-W, Kong J-S (2009) Quantitative risk evaluation based on event tree analysis technique: application to the design of shield TBM. Tunn Undergr Space Technol 24(3):269–277

    Article  Google Scholar 

  • Huang C, Ruan D (2008) Fuzzy risks and an updating algorithm with new observations. Risk Anal 28(3):681–694

    Article  Google Scholar 

  • IEC/FDIS (2009) Risk management—risk assessment techniques

    Google Scholar 

  • Isabella Bovolo C, Abele SJ, Bathurst JC, Caballero D, Ciglan M, Eftichidis G, Simo B (2009) A distributed framework for multi-risk assessment of natural hazards used to model the effects of forest fire on hydrology and sediment yield. Comput Geosci 35(5):924–945

    Article  Google Scholar 

  • Jensen FV (2001) Bayesian networks and decision graphs. In: Statistics for engineering and information science, vol 32. Springer, p 34

    Google Scholar 

  • Ji Z, Li N, Xie W, Wu J, Zhou Y (2013) Comprehensive assessment of flood risk using the classification and regression tree method. Stoch Env Res Risk Assess 27(8):1815–1828. https://doi.org/10.1007/s00477-013-0716-z

    Article  Google Scholar 

  • Jiao Y, Hudson JA (1995) The fully-coupled model for rock engineering systems

    Google Scholar 

  • Kappes MS, Gruber K, Frigerio S, Bell R, Keiler M, Glade T (2012a) The MultiRISK platform: the technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology 151:139–155

    Article  Google Scholar 

  • Kappes MS, Gruber K, Frigerio S, Bell R, Keiler M, Glade T (2012b) The MultiRISK platform: the technical concept and application of a regional-scale multihazard exposure analysis tool. Geomorphology 151–152:139–155. https://doi.org/10.1016/j.geomorph.2012.01.024

    Article  Google Scholar 

  • Kappes MS, Keiler M, von Elverfeldt K, Glade T (2012c) Challenges of analyzing multi-hazard risk: a review. Nat Hazards 64(2):1925–1958. https://doi.org/10.1007/s11069-012-0294-2

    Article  Google Scholar 

  • Kappes MS, Papathoma-Köhle M, Keiler M (2012d) Assessing physical vulnerability for multi-hazards using an indicator-based methodology. Appl Geogr 32(2):577–590

    Article  Google Scholar 

  • Khakzad N (2015) Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures. Reliab Eng Syst Saf 138:263–272

    Article  Google Scholar 

  • Khakzad N, Khan F, Amyotte P (2013a) Dynamic safety analysis of process systems by mapping bow-tie into Bayesian network. Process Saf Environ Prot 91(1–2):46–53. https://doi.org/10.1016/j.psep.2012.01.005

    Article  Google Scholar 

  • Khakzad N, Khan F, Amyotte P, Cozzani V (2013) Risk management of domino effects considering dynamic consequence analysis. Risk Anal. https://doi.org/10.1111/risa.12158

    Article  Google Scholar 

  • Khakzad N, Khan F, Amyotte P, Cozzani V (2014) Risk management of domino effects considering dynamic consequence analysis. Risk Anal 34(6):1128–1138

    Article  Google Scholar 

  • Langseth H, Nielsen TD, Rumí R, Salmerón A (2009) Inference in hybrid Bayesian networks. Reliab Eng Syst Saf 94(10):1499–1509. https://doi.org/10.1016/j.ress.2009.02.027

    Article  Google Scholar 

  • Langseth H, Nielsen TD, Salmerón A (2010) Parameter estimation and model selection for mixtures of truncated exponentials. Int J Approximate Reasoning 51(5):485–498

    Article  Google Scholar 

  • Lauritzen SL (1995) The EM algorithm for graphical association models with missing data. Comput Stat Data Anal 19(2):191–201

    Article  Google Scholar 

  • Lee C-J, Lee KJ (2006) Application of Bayesian network to the probabilistic risk assessment of nuclear waste disposal. Reliab Eng Syst Saf 91(5):515–532

    Article  Google Scholar 

  • Lerner UN (2002) Hybrid Bayesian networks for reasoning about complex systems

    Google Scholar 

  • Leroi E (1997) Landslide risk mapping: problems, limitations and developments. In: Landslide risk assessment. Balkema, Rotterdam, pp 239–250

    Chapter  Google Scholar 

  • Liang W-J, Zhuang D-F, Jiang D, Pan J-J, Ren H-Y (2012) Assessment of debris flow hazards using a Bayesian Network. Geomorphology 171:94–100

    Article  Google Scholar 

  • Liu B, Siu YL, Mitchell G, Xu W (2013) Exceedance probability of multiple natural hazards: risk assessment in China’s Yangtze River Delta. Nat Hazards 69(3):2039–2055. https://doi.org/10.1007/s11069-013-0794-8

    Article  Google Scholar 

  • Liu Z, Nadim F, Vangelsten BV, Eidsvig U, Kalsnes B (2014) Quantitative multi-risk modelling and management using Bayesian networks. In: Landslide science for a safer geoenvironment. Springer, pp 773–779

    Google Scholar 

  • Livingstone DJ, Salt DW (2005) Judging the significance of multiple linear regression models. J Med Chem 48(3):661–663

    Article  Google Scholar 

  • Lung T, Lavalle C, Hiederer R, Dosio A, Bouwer LM (2013) A multi-hazard regional level impact assessment for Europe combining indicators of climatic and non-climatic change. Glob Environ Change 23(2):522–536. https://doi.org/10.1016/j.gloenvcha.2012.11.009

    Article  Google Scholar 

  • Mahendra RS, Mohanty PC, Bisoyi H, Kumar TS, Nayak S (2011) Assessment and management of coastal multi-hazard vulnerability along the Cuddalore-Villupuram, east coast of India using geospatial techniques. Ocean Coast Manag 54(4):302–311

    Article  Google Scholar 

  • Malet J-P, Glade T, Casagli N (2010). Mountain risks: bringing science to society. CERG Strasbourg

    Google Scholar 

  • Marzocchi W (2009) Principles of multi-risk assessment: interaction amongst natural and man-induced risks. EUR-OP

    Google Scholar 

  • Marzocchi W, Garcia-Aristizabal A, Gasparini P, Mastellone ML, Di Ruocco A (2012) Basic principles of multi-risk assessment: a case study in Italy. Nat Hazards 62(2):551–573. https://doi.org/10.1007/s11069-012-0092-x

    Article  Google Scholar 

  • Marzocchi W, Sandri L, Gasparini P, Newhall C, Boschi E (2004) Quantifying probabilities of volcanic events: the example of volcanic hazard at Mount Vesuvius. J Geophys Res Solid Earth (1978–2012), 109(B11)

    Google Scholar 

  • Matellini DB, Wall AD, Jenkinson ID, Wang J, Pritchard R (2013) Modelling dwelling fire development and occupancy escape using Bayesian network. Reliab Eng Syst Saf 114:75–91

    Article  Google Scholar 

  • MATRIX (2010–13) New Multi-HAzard and MulTi-RIsK assessment MethodS for Europe. (ENV.2010.1.3.4-1)

    Google Scholar 

  • Mediero L, Garrote L, Martin-Carrasco F (2007) A probabilistic model to support reservoir operation decisions during flash floods. Hydrol Sci J 52(3):523–537

    Article  Google Scholar 

  • Molina J-L, Pulido-Velázquez D, García-Aróstegui JL, Pulido-Velázquez M (2013) Dynamic Bayesian networks as a decision support tool for assessing climate change impacts on highly stressed groundwater systems. J Hydrol 479:113–129

    Article  Google Scholar 

  • Money ES, Reckhow KH, Wiesner MR (2012) The use of Bayesian networks for nanoparticle risk forecasting: model formulation and baseline evaluation. Sci Total Environ 426:436–445

    Article  Google Scholar 

  • Moral S, Rumí R, Salmerón A (2001) Mixtures of truncated exponentials in hybrid Bayesian networks. In: Symbolic and quantitative approaches to reasoning with uncertainty. Springer, pp 156–167

    Google Scholar 

  • Murphy K (2001) The bayes net toolbox for matlab. Comput Sci Stat 33(2):1024–1034

    Google Scholar 

  • Murphy KP (2002) Dynamic bayesian networks. In: Jordan M (ed) Probabilistic graphical models

    Google Scholar 

  • Nadejda Komendantova AS (2013)  <Multi-risk approach in centralized and decentralized.pdf>

    Google Scholar 

  • Nadim F, Liu Z (2013a) Quantitative risk assessment for earthquake-triggered landslides using Bayesian network. Paper presented at the proceedings of the 18th international conference on soil mechanics and geotechnical engineering, Paris

    Google Scholar 

  • Nadim F, Liu ZQ (2013b) Quantitative risk assessment for earthquake-triggered landslides using Bayesian network

    Google Scholar 

  • Neil M, Fenton N, Tailor M (2005) Using Bayesian networks to model expected and unexpected operational losses. Risk Anal 25(4):963–972

    Article  Google Scholar 

  • Neri A, Aspinall WP, Cioni R, Bertagnini A, Baxter PJ, Zuccaro G, et al (2008) Developing an event tree for probabilistic hazard and risk assessment at Vesuvius. J Volcanol Geotherm Res 178(3):397–415

    Article  Google Scholar 

  • Neri M, Le Cozannet G, Thierry P, Bignami C, Ruch J (2013) A method for multi-hazard mapping in poorly known volcanic areas: an example from Kanlaon (Philippines). Nat Hazards Earth Syst Sci 13(8):1929–1943. https://doi.org/10.5194/nhess-13-1929-2013

    Article  Google Scholar 

  • Newhall C, Hoblitt R (2002) Constructing event trees for volcanic crises. Bull Volc 64(1):3–20

    Article  Google Scholar 

  • Nyberg JB, Marcot BG, Sulyma R (2006) Using Bayesian belief networks in adaptive management. Can J For Res 36(12):3104–3116. https://doi.org/10.1139/x06-108

    Article  Google Scholar 

  • Pagano A, Giordano R, Portoghese I, Fratino U, Vurro M (2014) A Bayesian vulnerability assessment tool for drinking water mains under extreme events. Nat Hazards 74(3):2193–2227

    Article  Google Scholar 

  • Papakosta P, Straub D (2013) A Bayesian network approach to assessing wildfire consequences. Paper presented at the proceedings of ICOSSAR

    Google Scholar 

  • Peng M, Zhang L (2012) Analysis of human risks due to dam-break floods—part 1: a new model based on Bayesian networks. Nat Hazards 64(1):903–933

    Article  Google Scholar 

  • Pollino CA, Woodberry O, Nicholson A, Korb K, Hart BT (2007) Parameterisation and evaluation of a Bayesian network for use in an ecological risk assessment. Environ Model Softw 22(8):1140–1152

    Article  Google Scholar 

  • Qiu J, Wang Z, Ye X, Liu L, Dong L (2014) Modeling method of cascading crisis events based on merging Bayesian Network. Decis Support Syst 62:94–105

    Article  Google Scholar 

  • Reese S, King A, Bell R, Schmidt J (2007) Regional RiskScape: a multi-hazard loss modelling tool

    Google Scholar 

  • Ritchey T (1991) Analysis and synthesis: on scientific method-based on a study by Bernhard Riemann. Syst Res 8(4):21–41

    Article  Google Scholar 

  • Ronchetti F, Corsini A, Kollarits S, Leber D, Papez J, Plunger K, et al (2013) Improve information provision for disaster management: MONITOR II, EU project. In: Landslide science and practice. Springer, pp 47–54

    Google Scholar 

  • Rowe JP, Lester JC (2010) Modeling user knowledge with dynamic Bayesian networks in interactive narrative environments

    Google Scholar 

  • Rumí R, Salmerón A, Moral S (2006) Estimating mixtures of truncated exponentials in hybrid Bayesian networks. Test 15(2):397–421

    Article  Google Scholar 

  • Sandri L, Thouret J-C, Constantinescu R, Biass S, Tonini R (2014) Long-term multi-hazard assessment for El Misti volcano (Peru). Bull Volcanol 76(2). https://doi.org/10.1007/s00445-013-0771-9

  • Schmidt-Thomé P, Kallio H, Jarva J, Tarvainen T, Greiving S (2006) The spatial effects and management of natural and technological hazards in Europe-ESPON 1.3.1 executive summary. Geological Survey of Finland

    Google Scholar 

  • Schmidt J, Matcham I, Reese S, King A, Bell R, Henderson R, Heron D (2011) Quantitative multi-risk analysis for natural hazards: a framework for multi-risk modelling. Nat Hazards 58(3):1169–1192. https://doi.org/10.1007/s11069-011-9721-z

    Article  Google Scholar 

  • Smith AFM, Gelfand AE (1992) Bayesian statistics without tears: a sampling–resampling perspective. Am Stat 46(2):84–88

    Google Scholar 

  • Song Y, Gong J, Gao S, Wang D, Cui T, Li Y, Wei B (2012) Susceptibility assessment of earthquake-induced landslides using Bayesian network: a case study in Beichuan, China. Comput Geosci 42:189–199

    Article  Google Scholar 

  • Špačková O, Straub D (2011) Probabilistic risk assessment of excavation performance in tunnel projects using Bayesian networks: a case study. Paper presented at the proceedings of the 3rd international symposium on geotechnical safety and risk

    Google Scholar 

  • Straub D, Grêt-Regamey A (2006) A Bayesian probabilistic framework for avalanche modelling based on observations. Cold Reg Sci Technol 46(3):192–203

    Article  Google Scholar 

  • Syphard AD, Keeley JE, Massada AB, Brennan TJ, Radeloff VC (2012) Housing arrangement and location determine the likelihood of housing loss due to wildfire. PLoS ONE 7(3):e33954

    Article  Google Scholar 

  • Tarvainen T, Jarva J, Greiving S (2006) Spatial pattern of hazards and hazard interactions in Europe. Spec Paper Geol Surv Finland 42:83

    Google Scholar 

  • Tate E, Cutter SL, Berry M (2010) Integrated multihazard mapping. Environ Plann B Plann Des 37(4):646

    Article  Google Scholar 

  • Thierry P, Stieltjes L, Kouokam E, Nguéya P, Salley PM (2007) Multi-hazard risk mapping and assessment on an active volcano: the GRINP project at Mount Cameroon. Nat Hazards 45(3):429–456. https://doi.org/10.1007/s11069-007-9177-3

    Article  Google Scholar 

  • Ullah A, Wang H (2013) Parametric and nonparametric frequentist model selection and model averaging. Econometrics 1(2):157–179. https://doi.org/10.3390/econometrics1020157

    Article  Google Scholar 

  • UNDHA (1992) Internationally agreed glossary of basic terms related to disaster management. Glossary (DNA/93/36). Geneva

    Google Scholar 

  • Uusitalo L (2007) Advantages and challenges of Bayesian networks in environmental modelling. Ecol Model 203(3):312–318

    Article  Google Scholar 

  • van Westen, C. J. (2013) 3.10 remote sensing and GIS for natural hazards assessment and disaster risk management. In: Shroder JF (ed) Treatise on geomorphology. Academic Press, San Diego, pp. 259–298

    Google Scholar 

  • van Westen C, Kappes MS, Luna BQ, Frigerio S, Glade T, Malet J-P (2014) Medium-scale multi-hazard risk assessment of gravitational processes. In: Mountain risks: from prediction to management and governance. Springer, pp 201–231

    Google Scholar 

  • van Westen CJ, Montoya L, Boerboom L (2002) <MULTI hazard risk costa rica westen.pdf>

    Google Scholar 

  • van Westen CJ, Quan Luna B, Vargas Franco R, Malet JP, Jaboyedoff M, Kappes MS, Sterlacchini S (2010) Development of training materials on the use of geo-information for multi-hazard risk assessment in a mountainous environment

    Google Scholar 

  • van Westen CJ, Rengers N, Terlien MTJ, Soeters R (1997) Prediction of the occurrence of slope instability phenomenal through GIS-based hazard zonation. Geol Rundsch 86(2):404–414

    Article  Google Scholar 

  • Venkatesan M, Thangavelu A, Prabhavathy P (2013) An improved Bayesian classification data mining method for early warning landslide susceptibility model using GIS. Paper presented at the proceedings of seventh international conference on bio-inspired computing: theories and applications (BIC-TA 2012)

    Google Scholar 

  • Wang J, Gu X, Huang T (2013) Using Bayesian networks in analyzing powerful earthquake disaster chains. Nat Hazards 68(2):509–527

    Article  Google Scholar 

  • Weber P, Medina-Oliva G, Simon C, Iung B (2012) Overview on Bayesian networks applications for dependability, risk analysis and maintenance areas. Eng Appl Artif Intell 25(4):671–682

    Article  Google Scholar 

  • Westen CJ, Montoya L, Boerboom L, Badilla Coto E (2002) Multi-hazard risk assessment using GIS in urban areas: a case study for the city of Turrialba, Costa Rica

    Google Scholar 

  • White GF, Kates RW, Burton I (2001) Knowing better and losing even more: the use of knowledge in hazards management. Glob Environ Change Part B Environ Hazards 3(3–4):81–92. https://doi.org/10.1016/S1464-2867(01)00021-3

    Article  Google Scholar 

  • Wipulanusat W, Nakrod S, Prabnarong P (2011) Multi-hazard risk assessment using GIS and RS applications: a case study of Pak Phanang Basin. Walailak J Sci Technol (WJST) 6(1):109–125

    Google Scholar 

  • Wu X, Liu H, Zhang L, Skibniewski MJ, Deng Q, Teng J (2015) A dynamic Bayesian network based approach to safety decision support in tunnel construction. Reliab Eng Syst Saf 134:157–168

    Article  Google Scholar 

  • Yates M, Cozannet GL (2012) Brief communication “evaluating European coastal evolution using Bayesian networks”. Nat Hazards Earth Syst Sci 12(4):1173–1177

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yorgos N. Photis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsiplakidis, J., Photis, Y.N. (2019). Multihazard Risk Assessment from Qualitative Methods to Bayesian Networks: Reviewing Recent Contributions and Exploring New Perspectives. In: Koutsopoulos, K., de Miguel González, R., Donert, K. (eds) Geospatial Challenges in the 21st Century. Key Challenges in Geography. Springer, Cham. https://doi.org/10.1007/978-3-030-04750-4_21

Download citation

Publish with us

Policies and ethics