Skip to main content

Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications

  • Chapter
  • First Online:
Polymer Nanocomposites in Biomedical Engineering

Abstract

Nanomaterials have emerged as an extremely valuable asset in the world of material science. It’s unique, and substantial properties lurk scientist all over the world into incorporating them in various material synthesis. Composites are yet another powerful tool for the development of specific material according to our needs. Fusion of the above-mentioned two mighty tools results in birth of a whole new domain called nanocomposites. This unit provides details about different aspects of nanomaterials, composites, and their categories. This chapter talks thoroughly about the basics behind the various synthesis process involved along with optimization of various parameters related to fabrication of such nanocomposites. Among the pool of nanocomposites, silver nanoparticles and the composites based on these particles have harnessed much attention because of the striking properties of Ag nanoparticles like high electrical and thermal conductivity, chemical stability, catalytic activities, antimicrobial properties, nonlinear optical behavior, and surface-enhanced Raman scattering. Synthesis and development of AgNPs in the literature have been mentioned, and techniques have been reviewed. Detailed discussions based on each individual property have also been carried out along with exploring the applications in numerous varied fields.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelhamid ME, O’Mullane AP, Snook GA (2015) Storing energy in plastics: a review on conducting polymers & their role in electrochemical energy storage. RSC Adv 5(15):11611–11626

    Google Scholar 

  • Afzal AB, Akhtar MJ, Nadeem M, Ahmad M, Hassan MM, Yasin T, Mehmood M (2009) Structural and electrical properties of polyaniline/silver nanocomposites. J Phys D Appl Phys 42:015411

    Google Scholar 

  • Agel E, Bouet J, Fauvarque JF (2001) Characterization and use of anionic membranes for alkaline fuel cells. J Power Sour 101:267–274

    Google Scholar 

  • Ahmed A, Al-Ghamdi OA, Al-Hartomy F, El-Tantawy FY (2015) Novel polyvinyl alcohol/silver hybrid nanocomposites for high performance electromagnetic wave shielding effectiveness. Microsyst Technol 21:859–868

    Google Scholar 

  • Ajayan PM, Schadler LS, Braun PV (2003) Nanocomposite science and technology. Wiley. ISBN 3-527-30359-6

    Google Scholar 

  • Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem 11(20):3805–3821

    Google Scholar 

  • Amendola V, Polizzi S, Meneghetti M (2006) Laser ablation synthesis of gold nanoparticles in organic solvents. J Phys Chem B 110:7232–7237

    Google Scholar 

  • Arranz-Andrés J, Pulido-González N, Marín P, Aragón AM, Cerrada ML (2013) Electromagnetic shielding features in lightweight PVDF-aluminum based nanocomposites. Prog Electromagn Res B 48:175–196

    Google Scholar 

  • Atta AM, Hegazy M, El-Azabawy OE, Ismail HS (2011) Novel dispersed magnetite core–shell nanogel polymers as corrosion inhibitors for carbon steel in acidic medium. Corros Sci 53:1680–1689

    Google Scholar 

  • Azim SS, Satheesh A, Ramu KK, Ramu S, Venkatachari G (2006) Studies on graphite based conductive paint coatings. Prog Org Coat 55:1–4

    Google Scholar 

  • Bakshi SR, Lahiri D, Argawal A (2010) Carbon nanotube reinforced metal matrix composites-a review. Int Mater Rev 55(1):41–64

    Google Scholar 

  • Blinova NV, Stejskal J, Trchova M, Sapurina I (2009) Ciric-marjanovic the oxidation of aniline with silver nitrate to polyaniline-silver composites. Polymer 50:50–56

    Google Scholar 

  • Brett DW (2006) A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy/Wound Manag 52:34–41

    Google Scholar 

  • Bu Y, Chen Z, Li W (2013) Dramatically enhanced photocatalytic properties of Ag-modified graphene–ZnO quasi-shell–core heterojunction composite material. RSC Adv 3:24118

    Google Scholar 

  • Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA (2003) Raman dye-labeled nanoparticle probes for proteins. JACS 125:14676–14677

    Google Scholar 

  • Chang I, Park T, Lee J, Lee MH, Ko SH, Cha SW (2013) Bendable polymer electrolyte fuel cell using highly flexible Ag nanowire percolation network current collectors. J Mater Chem A 1:8541

    Google Scholar 

  • Chen J, Wang J, Zhang X, Jin Y (2008) Microwave-assisted green synthesis of silver nanoparticles by carboxymethyl cellulose sodium and silver nitrate. Mater Chem Phys 108(2–3):421–424

    Google Scholar 

  • Chen D, Qiao X, Qiu X, Chen J (2009) Synthesis and electrical properties of uniform silver nanoparticles for electronic applications. J Mater Sci 44(4):1076–1081

    Google Scholar 

  • Chen M, Zhang L, Duan S, Jing S, Jiang H, Luo M, Li C (2014) Highly conductive and flexible polymer composites with improved mechanical and electromagnetic interference shielding performances. Nanoscale 6:3796–3803

    Google Scholar 

  • Choi O, Deng KK, Kim NJ, Ross LJ, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074

    Google Scholar 

  • Choi HY, Lee TW, Lee SE, Lim JD, Jeong YG (2017) Silver nanowire/carbon nanotube/cellulose hybrid papers for electrically conductive and electromagnetic interference shielding elements. Compos Sci Technol 150:45–53

    Google Scholar 

  • Choudhury A (2009) Polyaniline/silver nanocomposites: dielectric properties and ethanol vapour sensitivity. Sens Actuators B: Chem 138(1):318–325, 24 Apr 2009

    Google Scholar 

  • ChumanovEvanoff DD, Evanoff G (2004) Size-controlled synthesis of nanoparticles. 2. Measurement of extinction, scattering, and absorption cross sections. J Phys Chem B 108:13957–13962

    Google Scholar 

  • Das AP, Bal B, Mahapatra PS (2015) CRC press, Taylor & Francis, pp 277–288

    Google Scholar 

  • Das C, Chatterjee S, Kumaraswamy G, Krishnamoorthy K (2017) Elastic compressible energy storage devices from ICE templated polymer gels treated with polyphenols. J Phys Chem C 121(6):3270–3278, 6 Feb 2017

    Google Scholar 

  • De Gusseme B, Sintubin L, Baert L, Thibo E, Hennebel T, Vermeulen G, Uyttendaele M, Verstraete W, Boon N (2010) Biogenic silver for disinfection of water contaminated with viruses. Appl Environ Microb 76:1082

    Google Scholar 

  • Dhibar S, Das CK (2017) Silver nanoparticles decorated polypyrrole/graphene nanocomposite: a potential candidate for next-generation supercapacitor electrode material. J Appl Polym Sci 134(16), 20 Apr 2017

    Google Scholar 

  • Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186:546–551

    Google Scholar 

  • Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X, Lara HH, Yacaman MJ (2005) Interaction of silver nanoparticles with HIV-1. J Nanobiotechnol 3:6

    Google Scholar 

  • El-Mahdy G, Atta AM, Dyab A, Al-Lohedan HA (2013) Protection of petroleum pipeline carbon steel alloys with new modified core-shell magnetite nanogel against corrosion in acidic medium. J Chem 1–9

    Google Scholar 

  • El-Mahdy GA, Atta AM, Al-Lohedan HA (2014) Synthesis and evaluation of poly(sodium 2-acrylamido-2-methylpropane sulfonate-co-styrene)/magnetite nanoparticle composites as corrosion inhibitors for steel. Molecules 19:1713–1731

    Google Scholar 

  • Enoch DA, Ludlam HA, Brown NM (2006) Invasive fungal infections: a review of epidemiology and management options. J Med Microbiol 55:809

    Google Scholar 

  • Espuche E, David L, Rochas C, Afeld JL, Compton JM, Thompson DW, Kranbuehl DE (2005) In situ generation of nanoparticulate lanthanum(III) oxide-polyimide films: characterization of nanoparticle formation and resulting polymer properties. Polymer 46:6657–6665

    Google Scholar 

  • Eswaraiah V, Sankaranarayanan V, Ramaprabhu S (2011) Inorganic nanotubes reinforced polyvinylidene fluoride composites as low-cost electromagnetic interference shielding materials. Nanoscale Res Lett 6:137

    Google Scholar 

  • Evangelos M (2007) Nanocomposites: stiffer by design. Nat Mater 6(1):9–11

    Google Scholar 

  • Fadiran OO, Girouard N, Meredith JC (2018) Pollen fillers for reinforcing and strengthening of epoxy composites. Emergent Mater 1(1–2):95–103

    Google Scholar 

  • Fayyad EM, Abdullah AM, Hassan MK, Mohamed AM, Jarjoura G, Farhat Z (2018) Recent advances in electroless-plated Ni-P and its composites for erosion and corrosion applications: a review. Emergent Mater 1(1–2):1–22

    Google Scholar 

  • Feng QL, Wu J, Chen GQ, Cui FZ, Kim TN, Kim JO (2000) A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Biomed Mater Res 52:662–668

    Google Scholar 

  • Frackowiak E, Khomenko V, Jurewicz K, Lota K, Béguin F (2006) Supercapacitors based on conducting polymers/nanotubes composites. J Power Sour 153:413–418

    Google Scholar 

  • Freeman AI, Halladay LJ, Cripps P (2012) The effect of silver impregnation of surgical scrub suits on surface bacterial contamination. Vet J 192:489

    Google Scholar 

  • Galdiero S, Falanga A, Vitiello M, Cantisani M, Marra V, Galdiero M (2011) Silver nanoparticles as potential antiviral agents. Molecules 16:8894

    Google Scholar 

  • Gashti MP, Ghehi ST, Arekhloo SV, Mirsmaeeli A, Kiumarsi A (2015) Electromagnetic shielding response of UV-induced polypyrrole/silver coated wool. Fibers Polym 16:585–592

    Google Scholar 

  • Ghosh S, Das AP (2015) Modified titanium oxide (TiO2) nanocomposites and its array of applications: a review. Toxicol Environ Chem 97(5):491–514

    Google Scholar 

  • Guo Q, Ghadiri R, Weigel T, Aumann A, Gurevich E, Esen C, Medenbach O, Cheng W, Chichkov B, Ostendorf A (2014) Comparison of in situ and ex situ methods for synthesis of two-photon polymerization polymer nanocomposites. Polymers 6(7):2037

    Google Scholar 

  • Gupta K, Jana PC, Meikap AK (2010) Optical and electrical transport properties of polyaniline–silver nanocomposite. Synth Met 160:1566

    Google Scholar 

  • Han M, Gao X, Su JZ, NieS (2001) In vivo cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 19:631–635

    Google Scholar 

  • Hirata M, Gotou T, Horiuchi S, Fujiwara M, Ohba M (2004) Thin-film particles of graphite oxide 1: high-yield synthesis and flexibility of the particles. Carbon 42:2929

    Google Scholar 

  • Huang H, Yang X (2004) Synthesis of polysaccharide-stabilized gold and silver nanoparticles: a green method. Carbohydr Res 339:2627–2631

    Google Scholar 

  • Imai M, Akiyama K, Tanaka T, Sano E (2010) Highly strong and conductive carbon nanotube/cellulose composite paper. Compos Sci Technol 70:1564–1570

    Google Scholar 

  • Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S, Paknikar KM (2009) Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm 6:1388

    Google Scholar 

  • Jing X, Wang Y, Zhang B (2005) Electrical conductivity and electromagnetic interference shielding of polyaniline/polyacrylate composite coatings. J Appl Polym Sci 98:2149–2156

    Google Scholar 

  • Jones CM, Hoek EMV (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531

    Google Scholar 

  • Jung J, Oh H, Noh H, Ji J, Kim S (2006) Metal nanoparticle generation using a small ceramic heater with a local heating area. J Aerosol Sci 37:1662–1670

    Google Scholar 

  • Kabashin AV, Meunier M (2003) Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J Appl Phys 94:7941–7943

    Google Scholar 

  • Kalia S (2015) Springer series on polymer and composite material. Springer

    Google Scholar 

  • Kawasaki M, Nishimura N (2006) 1064-nm laser fragmentation of thin Au and Ag flakes in acetone for highly productive pathway to stable metal nanoparticles. Appl Surf Sci 253:2208–2216

    Google Scholar 

  • Khanna PK, Singh N, Charan S, Subbarao VVVS, Gokhale R, Mulik UP (2005) Synthesis and characterization of Ag/PVA nanocomposite by chemical reduction method. Mater Chem Phys 93:117–121

    Google Scholar 

  • Kim JS (2007) Antimicrobial effects of silver nanoparticles. Nanomed Nanotechnol 3:95

    Google Scholar 

  • Kim S, Yoo B, Chun K, Kang W, Choo J, Gong M et al (2005) Catalytic effect of laser ablated Ni nanoparticles in the oxidative addition reaction for a coupling reagent of benzylchloride and bromoacetonitrile. J Mol Catal A: Chem 226:231–234

    Google Scholar 

  • Kim K-J, Sung WS, Suh BK, Moon S-K, Choi J-S, Kim JG, Lee DG (2009) Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 22:235

    Google Scholar 

  • Kim SW, Jung JH, Lamsal K, Kim YS, Min JS, Lee YS (2012) Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology 40(1):53–58

    Google Scholar 

  • Kim E, Lim DY, Kang Y, Yoo E (2016) Fabrication of a stretchable electromagnetic interference shielding silver nanoparticle/elastomeric polymer composite. RSC Adv 6:52250–52254

    Google Scholar 

  • Klasen HJ (2000) Historical review of the use of silver in the treatment of burns. I. Early Uses Burns 26:117–130

    Google Scholar 

  • Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39

    Google Scholar 

  • Kruis FE, Fissan H, Peled A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications—a review. J Aerosol Sci 29(5–6):511–535

    Google Scholar 

  • Krutyakov YA, Kudrynskiy AA, Olenin AY, Lisichkin GV (2008) Synthesis and properties of silver nanoparticles: advances and prospects. Russ Chem Rev 77:233

    Google Scholar 

  • Ku BK, Maynard AD (2006) Generation and investigation of airborne silver nanoparticles with specific size and morphology by homogeneous nucleation, coagulation and sintering. J Aerosol Sci 37(4):452–470

    Google Scholar 

  • Kumar A, Vemula P, Ajayan PM, John G (2008) Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil. Nat Mater 7:236

    Google Scholar 

  • Kwon S, Ma R, Kim U, Choi HR, Baik S (2001) Flexible electromagnetic interference shields made of silver flakes, carbon nanotubes and nitrile butadiene rubber. Carbon 214(68):118–124

    Google Scholar 

  • Lara HH, Garza-trevino EN, Ixtepan-turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotechnol 9:30

    Google Scholar 

  • Le AT (2012) Powerful colloidal silver nanoparticles for the prevention of gastrointestinal bacterial infections. Adv Nat Sci Nanosci Nanotechnol 4:045007

    Google Scholar 

  • Lee H, Hong S, Kwon J, Suh YD, Lee J, Moon H, Yeo J, Ko SH (2015) All-solid-state flexible supercapacitors by fast laser annealing of printed metal nanoparticle layers. J Mater Chem A 3:8339–8345

    Google Scholar 

  • Lee TW, Lee SE, Jeong YG (2016) Highly effective electromagnetic interference shielding materials based on silver nanowire/cellulose papers. ACS Appl Mater Interfaces 8:13123–13132

    Google Scholar 

  • Li SM, Jia N, Zhu JF, Ma MG, Xu F, Wang B, Sun RC (2011a) Rapid microwave-assisted preparation and characterization of cellulose–silver nanocomposites. Carbohyd Polym 83(2):422–429

    Google Scholar 

  • Li SM, Jia N, Ma MG, Zhang Z, Liu QH, Sun RC (2011b) Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohyd Polym 86(2):441–447

    Google Scholar 

  • Li HJ, Zhang AQ, Hu Y, Sui L, Qian DJ, Chen M (2012) Large-scale synthesis and self-organization of silver nanoparticles with tween 80 as a reductant and stabilizer. Nanoscale Res Lett 7(1):612

    Google Scholar 

  • Li Y, Cui P, Wang L, Lee H, Lee K, Lee H (2013) Highly bendable, conductive, and transparent film by an enhanced adhesion of silver nanowires. ACS Appl Mater Interfaces 5:9155–9160

    Google Scholar 

  • Link S, Burda C, Nikoobakht B, El-Sayed M (2000) Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 104:6152–6163

    Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2000) Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J Phys Chem B 104:8333–8337

    Google Scholar 

  • Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B 105:5114–5120

    Google Scholar 

  • Mallikarjuna NN, Varma RS (2007) Microwave-assisted shape-controlled bulk synthesis of noble nanocrystals and their catalytic properties. Cryst Growth Des 7(4):686–690

    Google Scholar 

  • Mamlouk M, Scott K (2012) Effect of anion functional groups on the conductivity and performance of anion exchange polymer membrane fuel cells. J Power Sour 211:140–146

    Google Scholar 

  • Matsui K, Tobita E, Sugimoto K, Kondo K, Seita T, Akimoto A (1986a) J Appl Polym Sci 32:4137–4143

    Google Scholar 

  • Matsui K, Tobita E, Sugimoto K, Kondo K, Seita T, Akimoto A (1986b) Novel anion exchange membranes having fluorocarbon backbone: preparation and stability. J Appl Polym Sci 32(3):4137–4143

    Google Scholar 

  • Matsumura Y, Yoshikata K, Kunisaki SI, Tsuchido T (2002) Mode of bactericidal action of silver zeolite and its comparison with that of silver nitrate. Appl Environ Microbiol 69:4278–4281

    Google Scholar 

  • Melaiye A, Sun Z, Hindi K, Milsted A, Ely D, Reneker DH, Tessier CA, Youngs WJ (2005) Silver (I) − imidazole cyclophane gem-diol complexes encapsulated by electrospun tecophilic nanofibers: formation of nanosilver particles and antimicrobial activity. J Am Chem Soc 127:2285–2291

    Google Scholar 

  • Melvin GJ, Ni QQ, Suzuki Y, Natsuki T (2014) Microwave-absorbing properties of silver nanoparticle/carbon nanotube hybrid nanocomposites. J Mater Sci 49(14):5199–5207

    Google Scholar 

  • Meng T, Yi C, Liu L, Karim A, Gong X (2018) Enhanced thermoelectric properties of two-dimensional conjugated polymers. Emergent Mater 1(1–2):1

    Google Scholar 

  • Merga G, Wilson R, Lynn G, Milosavljevic B, Meisel D (2007) Redox catalysis on “naked” silver nanoparticles. J Phys Chem C 111:12220–12206

    Google Scholar 

  • Mi H, Zhang X, An S, Ye X, Yang S (2007) Microwave-assisted synthesis and electrochemical capacitance of polyaniline/multi-wall carbon nanotubes composite. Electrochem Commun 9:2859–2862

    Google Scholar 

  • Monteiro DR, Gorup LF, Silva S, Negri M, de Camargo ER, Oliveira R, Barbosa DD, Henriques M (2011) Silver colloidal nanoparticles: antifungal effect against adhered cells and biofilms of Candida albicans and Candida glabrata. Biofouling 27:711–719

    Google Scholar 

  • Morones JR (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346

    Google Scholar 

  • Mrlik M, Sobolciak P, Krupa I, Kasak P (2018) Light-controllable viscoelastic properties of a photolabile carboxybetaine ester-based polymer with mucus and cellulose sulfate. Emergent Mater 1(1–2):1–1

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R, Sastry M (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519

    Google Scholar 

  • Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M (2001b) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588

    Google Scholar 

  • Nasrollahi A, Pourshamsian KH, Mansourkiaee P (2011) Antifungal activity of silver nanoparticles on some of fungi. Int J Nano Dim 1(3):233–239

    Google Scholar 

  • Nguyen VL, Ohtaki M, Ngo VN, Cao MT, Nogami M (2012) Structure and morphology of platinum nanoparticles with critical new issues of low-and high-index facets. Adv Nat Sci: Nanosci Nanotechnol 3:025005

    Google Scholar 

  • Noorbakhsh F, Rezaie S, Shahverdi AR (2011) Antifungal effects of silver nanoparticle alone and with combination of antifungal drug on dermatophyte pathogen Trichophyton rubrum. Int Proc Chem Biol Environ Eng 5:364

    Google Scholar 

  • Oliveira M, Ugarte D, Zanchet D, Zarbin A (2005) Influence of synthetic parameters on the size, structure, and stability of dodecanethiol-stabilized silver nanoparticles. J Colloid Interface Sci 292:429–435

    Google Scholar 

  • Ostapova EV, Al’tshuler GN (2012) Electrochemical properties of polymetacyclophaneoctols and metal-polymer nanocomposites on their basis. Solid Fuel Chem 6:368–370

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007a) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 73:1712

    Google Scholar 

  • Pal S, Tak YK, Song JM (2007b) Dose the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol 27:1712–1720

    Google Scholar 

  • Pal A, Shah S, Devi S (2009) Microwave-assisted synthesis of silver nanoparticles using ethanol as a reducing agent. Mater Chem Phys 114(2–3):530–532

    Google Scholar 

  • Panáček A, Kolář M, Večeřová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zbořil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333

    Google Scholar 

  • Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams CS, Boudreau R, Le Gros MA, Larabell CA, Alivisatos (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14: R15–R27

    Google Scholar 

  • Park S, Park HH, Kim SY, Kim SJ, Woo K, Ko G (2014a) Antiviral properties of silver nanoparticles on a magnetic hybrid colloid. Appl Environ Microbiol 80(8):2343–2350

    Google Scholar 

  • Park T, Chang I, Lee J, Ko SH, Cha SW (2014b) Performance variation of flexible polymer electrolyte fuel cell with Ag nanowire current collector under torsion. ECS Trans 64(3):927–934

    Google Scholar 

  • Patil DS, Pawar SA, Patil PS, Kim JH, Shin JC (2016) Silver nanoparticles incorporated PEDOT-PSS electrodes for electrochemical supercapacitor. J Nanosci Nanotechnol 16(10):10625–10629, 1 Oct 2016

    Google Scholar 

  • Patil DS, Pawar SA, Devan RS, Gang MG, Ma YR, Kim JH, Patil PS (2013) Electrochemical supercapacitor electrode material based on polyacrylic acid/polypyrrole/silver composite. Electrochim Acta 105:569–577

    Google Scholar 

  • Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204

    Google Scholar 

  • Peng C, Zhang S, Jewell D, Chen GZ (2008) Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci 18:777–788

    Google Scholar 

  • Ponnamma D, Erturk A, Parangusan H, Deshmukh K, Ahamed MB, Al-Maadeed MA (2018) Stretchable quaternary phasic PVDF-HFP nanocomposite films containing graphene-titania-SrTiO3 for mechanical energy harvesting. Emergent Mater 1(1–2):55–65

    Google Scholar 

  • Popelka A, Sobolciak P, Mrlík M, Nogellova Z, Chodák I, Ouederni M, Al-Maadeed MA, Krupa I (2018) Foamy phase change materials based on linear low-density polyethylene and paraffin wax blends. Emergent Mater 1(1–2):1–8

    Google Scholar 

  • Radheshkumar C, Münstedt H (2005) Morphology and mechanical properties of antimicrobial polyamide/silver composites. Mater Lett 59:1949–1953

    Google Scholar 

  • Raffi M, Hussain F, Bhatti TM, Akhter JI, Hameed A, Hasan MM (2008) Antibacterial characterization of silver nanoparticles against E. Coli. J Mater Sci Technol 24:192–196

    Google Scholar 

  • Raimondi F, Scherer GG, Kötz R, Wokaun A (2005) Nanoparticles in energy technology: examples from electrochemistry and catalysis. Angew Chem Int Ed Engl 44:2190–2209

    Google Scholar 

  • Roe D, Karandikar B, Bonn-Savage N, Gibbins B, Roullet J-B (2008) Antimicrobial surface functionalization of plastic catheters by silver nanoparticles. J Antimicrob Chemoth 61:869

    Google Scholar 

  • Rogers JV, Parkinson CV, Choi YW, Speshock JL, Hussain SM (2008) A preliminary assessment of silver nanoparticle inhibition of monkeypox virus plaque formation. Nanoscale Res Lett 3:129

    Google Scholar 

  • Saifuddin N, Wong CW, Yasumira AA (2009) Rapid biosynthesis of silver nanoparticles using culture supernatant of bacteria with microwave irradiation. J Chem 6(1):61–70

    Google Scholar 

  • Salehi-Khojin A, Jhong HM, Rosen BA, Zhu W, Ma S, Kenis PJA, Masel RI (2013) Nanoparticle silver catalysts that show enhanced activity for carbon dioxide electrolysis. J Phys Chem C 117:1627

    Google Scholar 

  • Sawangphruk M, Suksomboon M, Kongsupornsak K, Khuntilo J, Srimuk P, Sanguansak Y, Klunbud P, Suktha P, Chiochan P (2013) High-performance supercapacitors based on silver nanoparticle–polyaniline–graphene nanocomposites coated on flexible carbon fiber paper. J Mater Chem A 1:9630

    Google Scholar 

  • Scheibel HG, Porstendörfer J (1983) Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm. J Aerosol Sci 14(2):113–126

    Google Scholar 

  • Seo MH, Choi SM, Lee DU, Kim WB, Chen Z (2015) Correlation between theoretical descriptor and catalytic oxygen reduction activity of graphene supported palladium and palladium alloy electrocatalysts. J Power Sour 300:1–9

    Google Scholar 

  • Serpone N, Salinaro A, Horikoshi S, Hidaka H (2006) Beneficial effects of photo-inactive titanium dioxide specimens on plasmid DNA, human cells and yeast cells exposed to UVA/UVB simulated sunlight. J Photochem Photobiol A 179:200

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009a) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Sur Interface 145:83

    Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009b) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Coll Interface Sci 145(1–2):83–96

    Google Scholar 

  • Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D (2007) Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18225:1031

    Google Scholar 

  • Şimşek M, Rzayev ZM, Acar S, Salamov B, Bunyatova U (2016) Novel colloidal nanofiber electrolytes from PVA-organoclay/poly (MA-alt-MVE), and their NaOH and Ag-carrying polymer complexes. Polym Eng Sci 56:204–213

    Google Scholar 

  • Singh D, Rawat D (2016) Microwave-assisted synthesis of silver nanoparticles from Origanum majorana and Citrus sinensis leaf and their antibacterial activity: a green chemistry approach. Bioresour Bioprocess 3(1):14

    Google Scholar 

  • Singh AK, Raykar VS (2008) Microwave synthesis of silver nanofluids with polyvinylpyrrolidone (PVP) and their transport properties. Colloid Polym Sci 286(14–15):1667–1673

    Google Scholar 

  • Sintubin L, Verstraete W, Boon N (2012) Biologically produced nanosilver: current state and future perspectives. Biotechnol Bioeng 109:2422

    Google Scholar 

  • Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci 275:177–182

    Google Scholar 

  • Sondi I, Goia DV, Matijević E (2003) Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J Colloid Interface Sci 260:75

    Google Scholar 

  • Sreeram KJ, Nidhin M, Nair BU (2008) Microwave assisted template synthesis of silver nanoparticles. Bull Mater Sci 31(7):937–942

    Google Scholar 

  • Stankovich S, Dikin DA, Dommett GH, Kohlhaas KM, Zimney EJ, Stach EA, Piner RD, Nguyen ST, Ruoff RS (2006) Graphene-based composite materials. Nature 442:282

    Google Scholar 

  • Stoševski I, Krstić J, Milikić J, Šljukić B, Kačarević-Popović Z, Mentus S, Miljanić Š (2016) Radiolitically synthesized nano Ag/C catalysts for oxygen reduction and borohydride oxidation reactions in alkaline media, for potential applications in fuel cells. Energy 101:79–90

    Google Scholar 

  • Suresh AK (2010) Silver nanocrystallites: biofabrication using Shewanella oneidensis, and an evaluation of their comparative toxicity on gram-negative and gram-positive bacteria. Environ Sci Technol 44:5210

    Google Scholar 

  • Sylvestre JP, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J Am Chem Soc 126(23):7176–7177

    Google Scholar 

  • Tang Q, Wu J, Tang Z, Li Y, Lin J, Huang M (2011) Flexible and macroporous network-structured catalysts composed of conducting polymers and Pt/Ag with high electrocatalytic activity for methanol oxidation. J Mater Chem 21:13354

    Google Scholar 

  • Tarasenko N, Butsen A, Nevar E, Savastenko N (2006) Synthesis of nanosized particles during laser ablation of gold in water. Appl Surf Sci 252:4439–4444

    Google Scholar 

  • Tedsree K, Li T, Jones S, Chan CW, Yu KM, Bagot PA, Marquis EA, Smith GD, Tsang SC (2011) Hydrogen production from formic acid decomposition at room temperature using a Ag–Pd core–shell nanocatalyst. Nat Nanotechnol 6:302–307

    Google Scholar 

  • Temgire MK, Joshi SS (2003) Optical and structural studies of silver nanoparticles. Radiat Phys Chem 71:1039–1044

    Google Scholar 

  • Trogadas P, Parrondo J, Mijangos F, Ramani V (2011) Degradation mitigation in PEM fuel cells using metal nanoparticle additives. J Mater Chem 21:19381–19388

    Google Scholar 

  • Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202:80–85

    Google Scholar 

  • Tsuji T, Kakita T, Tsuji M (2003) Preparation of nano-size particle of silver with femtosecond laser ablation in water. Appl Surf Sci 206:314–320

    Google Scholar 

  • Wang B, Zhuang X, Deng W, Cheng B (2010) Microwave-assisted synthesis of silver nanoparticles in alkalic carboxymethyl chitosan solution. Engineering 2(05):387

    Google Scholar 

  • Wang YJ, Qiao J, Baker R, Zhang J (2013) Alkaline polymer electrolyte membranes for fuel cell applications. Chem Soc Rev 42(13):5768–5787

    Google Scholar 

  • Wang X, He B, Hu Z, Zeng Z, Han S (2014) Current advances in precious metal core–shell catalyst design. Sci Technol Adv Mater 15(4):043502

    Google Scholar 

  • Weber AP, Friedlander SK (1997) In situ determination of the activation energy for restructuring of nanometer aerosol agglomerates. J Aerosol Sci 28(2):179–192

    Google Scholar 

  • Wiley B, Sun Y, Mayers B, Xi Y (2005) Shape-controlled synthesis of metal nanostructures: the case of silver. Chem Eur J 11:454–463

    Google Scholar 

  • Xiang D, Chen Q, Pang L, Zheng C (2011) Inhibitory effects of silver nanoparticles on H1N1 influenza A virus in vitro. J Virol Methods 178:137

    Google Scholar 

  • Yeo J, Kim G, Hong S, Kim MS, Kim D, Lee J, Lee HB, Kwon J, Suh YD, Kang HW, Sung HJ (2014) Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application. J Power Sources 246:562–568, 15 Jan 2014

    Google Scholar 

  • Yin H, Yamamoto T, Wada Y, Yanagida S (2004) Large-scale and size-controlled synthesis of silver nanoparticles under microwave irradiation. Mater Chem Phys 83(1):66–70

    Google Scholar 

  • Yu Y, Ma CM, Teng C, Huang Y, Lee S, Wang I et al (2012) Electrical, morphological, and electromagnetic interference shielding properties of silver nanowires and nanoparticles conductive composites. Mater Chem Phy 136:334–340

    Google Scholar 

  • Zang J, Bao SJ, Li CM, Bian H, Cui X, Bao Q, Sun CQ, Guo J, Lian K (2008) Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J Phys Chem C 112:14843–14847

    Google Scholar 

  • Zhang X, Chen J (2011) Maximum equivalent power output and performance optimization analysis of an alkaline fuel cell/heat-driven cycle hybrid system. J Power Sour 196:10088–10093

    Google Scholar 

  • Zhang Y, Peng H, Huang W, Zhou Y, Zhang X, Yan D (2008) Hyperbranched poly (amidoamine) as the stabilizer and reductant to prepare colloid silver nanoparticles in situ and their antibacterial activity. J Phys Chem C 112:2330–2336

    Google Scholar 

  • Zhao X, Xia Y, Li Q, Ma X, Quan F, Geng C, Han Z (2014) Microwave-assisted synthesis of silver nanoparticles using sodium alginate and their antibacterial activity. Colloids Surf A 444:180–188

    Google Scholar 

  • Zheng M, Gu M, Jin Y, Jin G (2001) Optical properties of silver-dispersed PVP thin film. Mater Res Bull 36:853–859

    Google Scholar 

  • Zhou Z, He D, Guo Y, Cui Z, Wang M, Li G, Yang R (2009) Fabrication of polyaniline–silver nanocomposites by chronopotentiometry in different ionic liquid microemulsion systems. Thin Solid Films 517:6767

    Google Scholar 

  • Zhou W, Ma YY, Yang HA, Ding Y, Luo XG (2011) A label-free biosensor based on silver nanoparticles array for clinical detection of serum p53 in head and neck squamous cell carcinoma. Int J Nanomed 6:381–386

    Google Scholar 

Download references

Acknowledgements

This publication was partially made possible by UREP grant 23-116-2-041 from Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishor Kumar Sadasivuni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sadasivuni, K.K. et al. (2019). Silver Nanoparticles and Its Polymer Nanocomposites—Synthesis, Optimization, Biomedical Usage, and Its Various Applications. In: Sadasivuni, K., Ponnamma, D., Rajan, M., Ahmed, B., Al-Maadeed, M. (eds) Polymer Nanocomposites in Biomedical Engineering . Lecture Notes in Bioengineering. Springer, Cham. https://doi.org/10.1007/978-3-030-04741-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04741-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04740-5

  • Online ISBN: 978-3-030-04741-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics