# Sequential Metric Dimension

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11312)

## Abstract

Seager introduced the following game in 2013. An invisible and immobile target is hidden at some vertex of a graph G. Every step, one vertex v of G can be probed which results in the knowledge of the distance between v and the target. The objective of the game is to minimize the number of steps needed to locate the target, wherever it is.

We address the generalization of this game where $$k\ge 1$$ vertices can be probed at every step. Our game also generalizes the notion of the metric dimension of a graph. Precisely, given a graph G and two integers $$k,\ell \ge 1$$, the Localization Problem asks whether there exists a strategy to locate a target hidden in G in at most $$\ell$$ steps by probing at most k vertices per step. We show this problem is NP-complete when k (resp., $$\ell$$) is a fixed parameter.

Our main results are for the class of trees where we prove this problem is NP-complete when k and $$\ell$$ are part of the input but, despite this, we design a polynomial-time $$(+1)$$-approximation algorithm in trees which gives a solution using at most one more step than the optimal one. It follows that the Localization Problem is polynomial-time solvable in trees if k is fixed.

## Keywords

Games in graphs Metric dimension Complexity

## References

1. 1.
Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded tree-length graphs. SIAM J. Discrete Math. 31(2), 1217–1243 (2017)
2. 2.
Ben-Haim, Y., Gravier, S., Lobstein, A., Moncel, J.: Adaptive identification in graphs. J. Combin. Theor. Ser. A 115(7), 1114–1126 (2008)
3. 3.
Bensmail, J., Mazauric, D., Mc Inerney, F., Nisse, N., Pérennes, S.: Sequential metric dimension. Technical report, INRIA (2018). https://hal.archives-ouvertes.fr/hal-01717629
4. 4.
Bosek, B., Gordinowicz, P., Grytczuk, J., Nisse, N., Sokól, J., Sleszynska-Nowak, M.: Centroidal localization game. CoRR, abs/1711.08836 (2017)Google Scholar
5. 5.
Bosek, B., Gordinowicz, P., Grytczuk, J., Nisse, N., Sokól, J., Sleszynska-Nowak, M.: Localization game on geometric and planar graphs. CoRR, abs/1709.05904 (2017)Google Scholar
6. 6.
Brandt, A., Diemunsch, J., Erbes, C., LeGrand, J., Moffatt, C.: A robber locating strategy for trees. Discrete Appl. Math. 232, 99–106 (2017)
7. 7.
Carraher, J.M., Choi, I., Delcourt, M., Erickson, L.H., West, D.B.: Locating a robber on a graph via distance queries. Theor. Comput. Sci. 463, 54–61 (2012)
8. 8.
Díaz, J., Pottonen, O., Serna, M.J., van Leeuwen, E.J.: Complexity of metric dimension on planar graphs. J. Comput. Syst. Sci. 83(1), 132–158 (2017)
9. 9.
Foucaud, F., Klasing, R., Slater, P.J.: Centroidal bases in graphs. Networks 64(2), 96–108 (2014)
10. 10.
Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. I. Bounds. Theor. Comput. Sci. 668, 43–58 (2017)
11. 11.
Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)
12. 12.
Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to NP-Completeness. W.H. Freeman and Company, New York (1979)
13. 13.
Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)
14. 14.
Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: Proceedings of the 28th Conference on Computational Complexity, CCC, pp. 266–276. IEEE Computer Society (2013)Google Scholar
15. 15.
Haslegrave, J., Johnson, R.A.B., Koch, S.: Locating a robber with multiple probes. Discrete Math. 341(1), 184–193 (2018)
16. 16.
Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inf. Theor. 44(2), 599–611 (1998)
17. 17.
Seager, S.M.: Locating a robber on a graph. Discrete Math. 312(22), 3265–3269 (2012)
18. 18.
Seager, S.M.: A sequential locating game on graphs. Ars Comb. 110, 45–54 (2013)
19. 19.
Seager, S.M.: Locating a backtracking robber on a tree. Theor. Comput. Sci. 539, 28–37 (2014)
20. 20.
Slater, P.J.: Leaves of trees. In: Congressus Numerantium, vol. 14, pp. 549–559 (1975)Google Scholar
21. 21.
Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)