Advertisement

Sequential Metric Dimension

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11312)

Abstract

Seager introduced the following game in 2013. An invisible and immobile target is hidden at some vertex of a graph G. Every step, one vertex v of G can be probed which results in the knowledge of the distance between v and the target. The objective of the game is to minimize the number of steps needed to locate the target, wherever it is.

We address the generalization of this game where \(k\ge 1\) vertices can be probed at every step. Our game also generalizes the notion of the metric dimension of a graph. Precisely, given a graph G and two integers \(k,\ell \ge 1\), the Localization Problem asks whether there exists a strategy to locate a target hidden in G in at most \(\ell \) steps by probing at most k vertices per step. We show this problem is NP-complete when k (resp., \(\ell \)) is a fixed parameter.

Our main results are for the class of trees where we prove this problem is NP-complete when k and \(\ell \) are part of the input but, despite this, we design a polynomial-time \((+1)\)-approximation algorithm in trees which gives a solution using at most one more step than the optimal one. It follows that the Localization Problem is polynomial-time solvable in trees if k is fixed.

Keywords

Games in graphs Metric dimension Complexity 

References

  1. 1.
    Belmonte, R., Fomin, F.V., Golovach, P.A., Ramanujan, M.S.: Metric dimension of bounded tree-length graphs. SIAM J. Discrete Math. 31(2), 1217–1243 (2017)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ben-Haim, Y., Gravier, S., Lobstein, A., Moncel, J.: Adaptive identification in graphs. J. Combin. Theor. Ser. A 115(7), 1114–1126 (2008)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bensmail, J., Mazauric, D., Mc Inerney, F., Nisse, N., Pérennes, S.: Sequential metric dimension. Technical report, INRIA (2018). https://hal.archives-ouvertes.fr/hal-01717629
  4. 4.
    Bosek, B., Gordinowicz, P., Grytczuk, J., Nisse, N., Sokól, J., Sleszynska-Nowak, M.: Centroidal localization game. CoRR, abs/1711.08836 (2017)Google Scholar
  5. 5.
    Bosek, B., Gordinowicz, P., Grytczuk, J., Nisse, N., Sokól, J., Sleszynska-Nowak, M.: Localization game on geometric and planar graphs. CoRR, abs/1709.05904 (2017)Google Scholar
  6. 6.
    Brandt, A., Diemunsch, J., Erbes, C., LeGrand, J., Moffatt, C.: A robber locating strategy for trees. Discrete Appl. Math. 232, 99–106 (2017)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Carraher, J.M., Choi, I., Delcourt, M., Erickson, L.H., West, D.B.: Locating a robber on a graph via distance queries. Theor. Comput. Sci. 463, 54–61 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Díaz, J., Pottonen, O., Serna, M.J., van Leeuwen, E.J.: Complexity of metric dimension on planar graphs. J. Comput. Syst. Sci. 83(1), 132–158 (2017)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Foucaud, F., Klasing, R., Slater, P.J.: Centroidal bases in graphs. Networks 64(2), 96–108 (2014)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. I. Bounds. Theor. Comput. Sci. 668, 43–58 (2017)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Foucaud, F., Mertzios, G.B., Naserasr, R., Parreau, A., Valicov, P.: Identification, location-domination and metric dimension on interval and permutation graphs. II. Algorithms and complexity. Algorithmica 78(3), 914–944 (2017)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability - A Guide to NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Harary, F., Melter, R.A.: On the metric dimension of a graph. Ars Comb. 2, 191–195 (1976)zbMATHGoogle Scholar
  14. 14.
    Hartung, S., Nichterlein, A.: On the parameterized and approximation hardness of metric dimension. In: Proceedings of the 28th Conference on Computational Complexity, CCC, pp. 266–276. IEEE Computer Society (2013)Google Scholar
  15. 15.
    Haslegrave, J., Johnson, R.A.B., Koch, S.: Locating a robber with multiple probes. Discrete Math. 341(1), 184–193 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Karpovsky, M.G., Chakrabarty, K., Levitin, L.B.: On a new class of codes for identifying vertices in graphs. IEEE Trans. Inf. Theor. 44(2), 599–611 (1998)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Seager, S.M.: Locating a robber on a graph. Discrete Math. 312(22), 3265–3269 (2012)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Seager, S.M.: A sequential locating game on graphs. Ars Comb. 110, 45–54 (2013)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Seager, S.M.: Locating a backtracking robber on a tree. Theor. Comput. Sci. 539, 28–37 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Slater, P.J.: Leaves of trees. In: Congressus Numerantium, vol. 14, pp. 549–559 (1975)Google Scholar
  21. 21.
    Slater, P.J.: Domination and location in acyclic graphs. Networks 17(1), 55–64 (1987)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université Côte d’Azur, Inria, CNRS, I3SSophia AntipolisFrance
  2. 2.Université Côte d’Azur, InriaSophia AntipolisFrance

Personalised recommendations