The Phoenix GPS Receiver for Rocket and Satellite Applications: An Example for the Successful Utilization of COTS Technology in Space Projects

  • Markus MarkgrafEmail author


Phoenix is a GPS receiver developed by the German Space Agency. It is based on COTS components and flown already in several LEO satellites and in sounding rockets. The TID (Total Integrated Dose) qualification campaign is described in detail.


  1. 1.
    Sigtec Navigation Pty Ltd, MG5000 Series GPS Receiver – User Guide, MG5-200-GUIDS-User Guide, Issue B-T11, 27 September 2005Google Scholar
  2. 2.
    Zarlink Semiconductor, GP4020 GPS Baseband Processor Design Manual, DM5280, Issue 2, February 2000Google Scholar
  3. 3.
    DLR e.V./GSOC, Phoenix GPS Data Sheet; Issue 1.1 (2007), 2 Jan 2007Google Scholar
  4. 4.
    O. Montenbruck, E. Gill, M. Markgraf, Phoenix-XNS—a miniature real-time navigation system for LEO satellites, in Proceedings of NAVITEC 2006 (3rd ESA Workshop on Satellite Navigation User Equipment Technology), Noordwijk, The Netherlands, 11–13 Dec 2006Google Scholar
  5. 5.
    H. Lux, M. Markgraf, Thermal-Vacuum Testing of the Phoenix GPS Receiver; DLR/GSOC, TN 04-07, Version 1.0, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, 5 Oct 2004Google Scholar
  6. 6.
    A. Zadeh, S. Santandrea, S. Landstroem, M. Markgraf, DLR Phoenix GPS receiver radiation characterisation campaign proton irradiation testing at PSI - June 2010 Test Report; TEC-SYV/81/2011/REP/SS, Issue 1.0, ESA/ESTEC, Noordwijk, The Netherlands, 8 Feb 2011Google Scholar
  7. 7.
    M. Markgraf, O. Montenbruck, Total Ionizing Dose Testing of the Orion and Phoenix GPS Receivers; DLR/GSOC, TN 04-01, Version 1.0, Deutsches Zentrum für Luft- und Raumfahrt, Oberpfaffenhofen, Germany, 18 Feb 2004Google Scholar
  8. 8.
    M. Markgraf, O. Montenbruck, S. Metzger, Radiation testing of commercial-off-the-shelf GPS technology for use on LEO satellites, in Proceedings of NAVITEC 2004 (2nd ESA Workshop on Satellite Navigation User Equipment Technologies), Noordwijk, The Netherlands, 8–10 Dec 2004Google Scholar
  9. 9.
    M. Markgraf, O. Montenbruck, Phoenix-HD—a miniature GPS tracking system for commercial and scientific rocket launches, in 6th International Symposium on Launcher Technologies, Munich, Germany, 8–11 Nov 2005Google Scholar
  10. 10.
    O. Montenbruck, M. Markgraf, W. Jung, B. Bull, W. Engler, GPS based prediction of the instantaneous impact point for sounding rockets. Aerosp. Sci. Technol. 6, 283–294 (2002)CrossRefGoogle Scholar
  11. 11.
    A. Hauschild, M. Markgraf, O. Montenbruck, H. Pfeuffer, E. Dawidowicz, B. Rmili, A.C. Reis, Results of the GNSS receiver experiment OCAM-G on Ariane-5 flight VA 219. Proc Inst Mech Eng G J Aerosp Eng 231(6), 1100–1114 (2016). Scholar
  12. 12.
    F.C.G. Teston, K. Strauch, K. Gantois, S. Santandrea, A. Tobias, D. Gerrits, PROBA 2 in orbit results, in Proceeding of Small Satellite Systems and Services—The 4S Symposium, Funchal, Madeira, 31 May–4 June 2010Google Scholar
  13. 13.
    O. Montenbruck, M. Markgraf, J.-L. Issler, F. Mercier, S. Santandrea, A. Garcia, J. Naudet, S. Serre, GPS-based precise orbit determination and real-time navigation of the PROBA-2 spacecraft, in Proceedings of NAVITEC 2010 (5th ESA Workshop on Satellite Navigation Technologies and European Workshop on GNSS Signals and Signal Processing), Noordwijk, The Netherlands, 8–10 Dec 2010Google Scholar
  14. 14.
    R. Hoyt, N. Voronka, T. Newton, I. Barnes, J. Shepherd, S.S. Frank, J. Slostad, B. Jaroux, R. Twiggs, Early results of the Multi-Application Survivable Tether (MAST) space tether experiment; SSC07-VII-8/048, in 21st Annual AIAA/USU Conference on Small Satellites, Logan, UT, USA, 13–16 Aug 2007Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.German Space Operations Center (GSOC), Deutsches Zentrum für Luft-und Raumfahrt (DLR)WesslingGermany

Personalised recommendations