Skip to main content

Rectilinear Shortest Paths Among Transient Obstacles

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11346))

Abstract

This paper presents an optimal \(\varTheta (n \log n)\) algorithm for determining time-minimal rectilinear paths among n transient rectilinear obstacles. An obstacle is transient if it exists in the scene only for a specific time interval, i.e., it appears and then disappears at specific times. Given a point robot moving with bounded speed among transient rectilinear obstacles and a pair of points s, d, we determine a time-minimal, obstacle-avoiding path from s to d. The main challenge in solving this problem arises as the robot may be required to wait for an obstacle to disappear, before it can continue moving toward the destination. Our algorithm builds on the continuous Dijkstra paradigm, which simulates propagating a wavefront from the source point. We also solve a query version of this problem. For this, we build a planar subdivision with respect to a fixed source point, so that minimum arrival time to any query point can be reported in \(O(\log n)\) time, using point location for the query point in this subdivision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agarwal, P.K., Arge, L., Yi, K.: An optimal dynamic interval stabbing-max data structure? In: SODA 2005, pp. 803–812 (2005)

    Google Scholar 

  2. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Computing shortest paths in the plane with removable obstacles. In SWAT 2018, pp. 5:1–5:15 (2018)

    Google Scholar 

  3. Chazelle, B.: Functional approach to data structures and its use in multidimensional searching. SIAM J. Comput. 17(3), 427–462 (1988)

    Article  MathSciNet  Google Scholar 

  4. de Rezende, P.J., Lee, D.T., Wu, Y.F.: Rectilinear shortest paths with rectangular barriers. In: SCG 1985, pp. 204–213. ACM, New York (1985)

    Google Scholar 

  5. Fujimura, K.: On motion planning amidst transient obstacles. In: ICRA 1992, vol. 2, pp. 1488–1493, May 1992

    Google Scholar 

  6. Fujimura, K.: Motion planning using transient pixel representations. In: ICRA 1993, vol. 2, pp. 34–39, May 1993

    Google Scholar 

  7. Fujimura, K.: Motion planning amid transient obstacles. Int. J. Robot. Res. 13(5), 395–407 (1994)

    Article  Google Scholar 

  8. Hershberger, J., Kumar, N., Suri, S.: Shortest paths in the plane with obstacle violations. In: ESA 2017, pp. 49:1–49:14 (2017)

    Google Scholar 

  9. Hershberger, J., Suri, S.: An optimal algorithm for euclidean shortest paths in the plane. SIAM J. Comput. 28(6), 2215–2256 (1999)

    Article  MathSciNet  Google Scholar 

  10. Kirkpatrick, D.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)

    Article  MathSciNet  Google Scholar 

  11. LaValle, S.M.: Planning Algorithms, pp. 495–558. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  12. LaValle, S.M., Sharma, R.: Robot motion planning in a changing, partially predictable environment. In: ISIC 1994, pp. 261–266 (1994)

    Google Scholar 

  13. Lee, D.T., Yang, C.D., Wong, C.K.: Rectilinear paths among rectilinear obstacles. Discret. Appl. Math. 70(3), 185–215 (1996)

    Article  MathSciNet  Google Scholar 

  14. Maheshwari, A., Nouri, A., Sack, J.R.: Rectilinear shortest paths among transient obstacles. CoRR arXiv: abs/1809.08898 (2018)

  15. Mitchell, J.S.: L1 shortest paths among polygonal obstacles in the plane. Algorithmica 8(1–6), 55–88 (1992)

    Article  MathSciNet  Google Scholar 

  16. Mitchell, J.S.B.: Shortest paths among obstacles in the plane. In: SCG 1993, pp. 308–317. ACM, New York (1993)

    Google Scholar 

  17. Vaishnavi, V.K., Wood, D.: Rectilinear line segment intersection, layered segment trees, and dynamization. J. Algorithms 3(2), 160–176 (1982)

    Article  MathSciNet  Google Scholar 

  18. Yang, C., Lee, D., Wong, C.: Rectilinear path problems among rectilinear obstacles revisited. SIAM J. Comput. 24(3), 457–472 (1995)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Nouri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maheshwari, A., Nouri, A., Sack, JR. (2018). Rectilinear Shortest Paths Among Transient Obstacles. In: Kim, D., Uma, R., Zelikovsky, A. (eds) Combinatorial Optimization and Applications. COCOA 2018. Lecture Notes in Computer Science(), vol 11346. Springer, Cham. https://doi.org/10.1007/978-3-030-04651-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04651-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04650-7

  • Online ISBN: 978-3-030-04651-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics