Skip to main content

Robust Control Against Uncertainty Quartet: A Polynomial Approach

  • Chapter
  • First Online:

Part of the book series: Systems & Control: Foundations & Applications ((SCFA))

Abstract

One of the main components of a robust control theory is a quantifiable description of system uncertainty. A good uncertainty description should have three desirable properties. First, it is required to capture and perturbations. Second, it needs to be mathematically tractable, preferably by using elementary tools. Third, it should lead to a self-contained robust control theory, encompassing analysis and synthesis techniques that are accessible to both researchers and practitioners. While the additive uncertainty and multiplicative uncertainty are two of the most commonly employed uncertainty descriptions in systems modeling and control, they come up short of fulfilling the requirements above. In this chapter, we introduce the uncertainty quartet, a.k.a. the \(+-\times \div \) uncertainty (as is simpler to pronounce in oriental languages), which combines in a unifying framework the additive, multiplicative, subtractive and divisive uncertainties. An elementary robust control theory, involving mostly polynomial manipulations, is developed based on the uncertainty quartet. The proposed theory is demonstrated in a case study on controlling an under-sensed and under-actuated linear (USUAL) inverted pendulum system.

In memory of Robert Tempo.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Åström, K. J. and Murray, R. M. (2008). Feedback Systems: An Introduction for Scientists and Engineers. Princeton, NJ: Princeton University Press.

    Google Scholar 

  2. Doyle, J. C., Francis, B. A., and Tannenbaum, A. R. (1990). Feedback Control Theory. London: Macmillan Publishers Ltd.

    Google Scholar 

  3. Doyle, J. C., Glover, K., Khargonekar, P. P., and Francis, B. A. (1989). State-space solutions to standard \(\mathscr{H}_{\mathit{2}}\) and \(\mathscr{H}_{\infty } \) control problems. IEEE Trans. Automat. Contr., 34(8):831–847.

    Article  MathSciNet  Google Scholar 

  4. Doyle, J. C., Nakahira, Y., Leong, Y. P., Jenson, E., Dai, A., Ho, D., and Matni, N. (2016). Teaching control theory in high school. In Proc. 55th IEEE Conf. on Decision and Contr. (CDC), pages 5925–5949.

    Google Scholar 

  5. Fuhrmann, P. A. (2012). A Polynomial Approach to Linear Algebra. New York, NY: Springer Science & Business Media.

    Book  Google Scholar 

  6. Georgiou, T. T. and Smith, M. C. (1990). Optimal robustness in the gap metric. IEEE Trans. Automat. Contr., 35(6):673–686.

    Article  MathSciNet  Google Scholar 

  7. Georgiou, T. T. and Smith, M. C. (1997). Robustness analysis of nonlinear feedback systems: an input-output approach. IEEE Trans. Automat. Contr.,, 42(9):1200–1221.

    Article  MathSciNet  Google Scholar 

  8. Gu, G. and Qiu, L. (1998). Connection of multiplicative/relative perturbation in coprime factors and gap metric uncertainty. Automatica, 34(5):603–607.

    Article  MathSciNet  Google Scholar 

  9. Gu, G. and Qiu, L. (2011). A two-port approach to networked feedback stabilization. In Proc. 50th IEEE Conf. on Decision and Contr. and European Contr. Conf. (CDC-ECC), pages 2387–2392.

    Google Scholar 

  10. Halsey, K. M. and Glover, K. (2005). Analysis and synthesis of nested feedback systems. IEEE Trans. Automat. Contr., 50(7):984–996.

    Article  MathSciNet  Google Scholar 

  11. Kailath, T. (1980). Linear Systems. NJ: Prentice-Hall Englewood Cliffs.

    MATH  Google Scholar 

  12. Kanno, M. (2003). Guaranteed Accuracy Computations in Systems and Control. PhD thesis, University of Cambridge.

    Google Scholar 

  13. Lanzon, A. and Papageorgiou, G. (2009). Distance measures for uncertain linear systems: A general theory. IEEE Trans. Automat. Contr., 54(7):1532–1547.

    Article  MathSciNet  Google Scholar 

  14. Leong, Y. P. and Doyle, J. C. (2016). Understanding robust control theory via stick balancing. In Proc. 55th IEEE Conf. on Decision and Contr. (CDC), pages 1508–1514.

    Google Scholar 

  15. Liang, Y. and Qiu, L. (2009). A polynomial solution to an \(\mathscr{H}_{\infty } \) robust stabilization problem. In Proc. 7th IEEE Asian Contr. Conf. (ASCC), pages 642–647.

    Google Scholar 

  16. Liu, K.-Z. and Yao, Y. (2016). Robust Control: Theory and Applications. Singapore: John Wiley & Sons.

    Book  Google Scholar 

  17. McFarlane, D. and Glover, K. (1990). Robust Controller Design Using Normalized Coprime Factor Plant Descriptions. New York: Springer-Verlag.

    Book  Google Scholar 

  18. Nehari, Z. (1957). On bounded bilinear forms. Annals of Mathematics, pages 153–162.

    Article  MathSciNet  Google Scholar 

  19. Petersen, I. R. and Tempo, R. (2014). Robust control of uncertain systems: Classical results and recent developments. Automatica, 50(5):1315–1335.

    Article  MathSciNet  Google Scholar 

  20. Qiu, L. and Davison, E. J. (1992a). Feedback stability under simultaneous gap metric uncertainties in plant and controller. Syst. Contr. Lett., 18(1):9–22.

    Article  MathSciNet  Google Scholar 

  21. Qiu, L. and Davison, E. J. (1992b). Pointwise gap metrics on transfer matrices. IEEE Trans. Automat. Contr., 37(6):741–758.

    Article  MathSciNet  Google Scholar 

  22. Qiu, L. and Zhou, K. (2009). Introduction to Feedback Control. Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  23. Vidyasagar, M. (1985). Control System Synthesis: A Factorization Approach. Cambridge, MA: M.I.T. Press.

    MATH  Google Scholar 

  24. Vinnicombe, G. (1993). Frequency domain uncertainty and the graph topology. IEEE Trans. Automat. Contr., 38(9):1371–1383.

    Article  MathSciNet  Google Scholar 

  25. Vinnicombe, G. (2000). Uncertainty and Feedback: \(\mathscr{H}_{\infty }\)Loop-shaping and the\(\nu \)-gap Metric. Singapore: World Scientific.

    Google Scholar 

  26. Youla, D. C., Bongiorno, J. J., and Jabr, H. A. (1976). Modern Wiener-Hopf design of optimal controllers: part I. IEEE Trans. Automat. Contr., 21(1):3–13.

    Article  Google Scholar 

  27. Zames, G. and El-sakkary, A. K. (1980). Unstable systems and feedback: the gap metric. In Proc. 16th Allerton Conf., pages 380–385.

    Google Scholar 

  28. Zhao, D. and Qiu, L. (2016). Networked robust stabilization with simultaneous uncertainties in plant, controller and communication channels. In Proc. 55th IEEE Conf. on Decision and Contr. (CDC), pages 2376–2381.

    Google Scholar 

  29. Zhou, K. and Doyle, J. C. (1998). Essentials of Robust Control. Upper Saddle River, NJ: Prentice Hall.

    MATH  Google Scholar 

Download references

Acknowledgements

Useful discussions with Dr. Wei Chen on the writing of this chapter are gratefully acknowledged. This work was supported in part by the Research Grants Council of Hong Kong Special Administrative Region, China, under Project 16201115 and Theme-Based Research Scheme T23-701/14-N, and in part by the People’s Government of Pengjiang District, Jiangmen, Guangdong, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Qiu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhao, D., Chen, C., Khong, S.Z., Qiu, L. (2018). Robust Control Against Uncertainty Quartet: A Polynomial Approach. In: Başar, T. (eds) Uncertainty in Complex Networked Systems. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04630-9_4

Download citation

Publish with us

Policies and ethics