Skip to main content

Cooperative Resilient Estimation of Uncertain Systems Subjected to a Biasing Interference

Part of the Systems & Control: Foundations & Applications book series (SCFA)

Abstract

The chapter revisits the recent methodology of distributed robust filtering using the \(H_\infty \) filtering approach. It summarizes some recent results on the analysis and design of networks of robust filters, which cooperate to produce high-fidelity estimates for uncertain plants. These results are applied to the problem of detecting and neutralizing biasing attacks on distributed observer networks, to obtain algorithms for cooperative detection of malicious biasing behaviour of compromised network nodes.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    I.e., \(\alpha _{1i}I\le \Sigma _i(t)\le \alpha _{2i}I\) (\(\exists \alpha _{1i},\alpha _{2i}>0\)).

  2. 2.

    Formally, the attack model introduced in [7] is somewhat more general, it allows \(f_{i1}\) to be time varying, although it must satisfy certain additional constraints. This more general model can be used here as well, and this will not cause any technical issues. For that reason we restrict ourselves to the case where \(f_{i1}\) is a constant, to simplify the presentation.

References

  1. B. Açıkmeşe, M. Mandić, and J.L. Speyer. Decentralized observers with consensus filters for distributed discrete-time linear systems. Automatica, 50(4):1037–1052, 2014.

    CrossRef  MathSciNet  MATH  Google Scholar 

  2. T. Başar and P. Bernhard. \( {H}^\infty \)-optimal control and related minimax design problems: a dynamic game approach. Birkhäuser, Boston, 2nd edition, 1995.

    MATH  Google Scholar 

  3. G. Battistelli and L. Chisci. Kullback-Leibler average, consensus on probability densities, and distributed state estimation with guaranteed stability. Automatica, 50(3):707–718, 2014.

    CrossRef  MathSciNet  MATH  Google Scholar 

  4. R. Carli, A. Chiuso, L. Schenato, and S. Zampieri. Distributed Kalman filtering based on consensus strategies. IEEE Journal on Selected Areas in Communications, 26(4):622–633, 2008.

    CrossRef  Google Scholar 

  5. G. Dán and H. Sandberg. Stealth attacks and protection schemes for state estimators in power systems. In First IEEE International Conference on Smart Grid Communications (SmartGridComm), pages 214–219, 2010.

    Google Scholar 

  6. C. E. de Souza, D. Coutinho, and M. Kinnaert. Mean square state estimation for sensor networks. Automatica, 72:108–114, 2016.

    CrossRef  MathSciNet  MATH  Google Scholar 

  7. M. Deghat, V. Ugrinovskii, I. Shames, and C. Langbort. Detection of biasing attacks on distributed estimation networks. In 55th IEEE Conference on Decision and Control, Las Vegas, NV, 2016.

    Google Scholar 

  8. F. Dorfler, F. Pasqualetti, and F. Bullo. Continuous-time distributed observers with discrete communication. IEEE Journal of Selected Topics in Signal Processing, 7(2):296–304, 2013.

    CrossRef  Google Scholar 

  9. Z. Guo, D. Shi, K.H. Johansson, and L. Shi. Optimal linear cyber-attack on remote state estimation. IEEE Transactions on Control of Network Systems, 4(1):4–13, March 2017.

    CrossRef  MathSciNet  MATH  Google Scholar 

  10. D. Han, Y. Mo, and L. Xie. Robust state estimation against sparse integrity attacks. arXiv preprint arXiv:1601.04180, 2016.

  11. M. Kamgarpour and C. Tomlin. Convergence properties of a decentralized Kalman filter. In 47th IEEE Conference on Decision and Control, pages 3205–3210, 2008.

    Google Scholar 

  12. M.S. Mahmoud and H.M. Khalid. Distributed Kalman filtering: a bibliographic review. IET Control Theory and Applications, 7(4):483–501, 2013.

    CrossRef  MathSciNet  Google Scholar 

  13. D. Marelli, M. Zamani, M. Fu, and B. Ninness. Distributed Kalman filter in a network of linear systems. Systems and Control Letters, 116:71–77, 2018.

    CrossRef  MathSciNet  MATH  Google Scholar 

  14. N. Matni, Y.P. Leong, Y.S. Wang, S. You, M.B. Horowitz, and J.C. Doyle. Resilience in large scale distributed systems. Procedia Computer Science, 28:285–293, 2014.

    CrossRef  Google Scholar 

  15. P. Millán, L. Orihuela, C. Vivas, F.R. Rubio, D.V. Dimarogonas, and K.H. Johansson. Sensor-network-based robust distributed control and estimation. Control Engineering Practice, 21(9):1238–1249, 2013.

    CrossRef  Google Scholar 

  16. A. Mitra and S. Sundaram. Distributed observers for LTI systems. IEEE Transactions on Automatic Control, 63(12), 2018.

    CrossRef  MATH  Google Scholar 

  17. Y. Mo, T.H.-J. Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Sinopoli. Cyber-physical security of a smart grid infrastructure. Proceedings of the IEEE, 100(1):195–209, 2012.

    CrossRef  Google Scholar 

  18. T.R. Nelson and R.A. Freeman. Decentralized \({H}_\infty \) filtering in a multi-agent system. In American Control Conference, pages 5755–5760, St. Louis, MO, 2009.

    Google Scholar 

  19. R. Olfati-Saber. Distributed Kalman filter with embedded consensus filters. In 44th IEEE Conference on Decision and Control and 2005 European Control Conference, pages 8179–8184, 2005.

    Google Scholar 

  20. R. Olfati-Saber. Distributed Kalman filtering for sensor networks. In 46th IEEE Conference on Decision and Control, pages 5492–5498, 2007.

    Google Scholar 

  21. L. Orihuela, P. Millán, C. Vivas, and F.R. Rubio. Reduced-order \({H}_2/{H}_\infty \) distributed observer for sensor networks. International Journal of Control, 86(10):1870–1879, 2013.

    MathSciNet  MATH  Google Scholar 

  22. S. Park and N. C. Martins. Design of distributed LTI observers for state omniscience. IEEE Transactions on Automatic Control, 62(2):561–576, 2017.

    CrossRef  MathSciNet  MATH  Google Scholar 

  23. F. Pasqualetti, F. Dorfler, and F. Bullo. Attack detection and identification in cyber-physical systems. IEEE Transactions on Automatic Control, 58(11):2715–2729, 2013.

    CrossRef  MathSciNet  MATH  Google Scholar 

  24. F. Pasqualetti, A. Bicchi, and F. Bullo. Consensus computation in unreliable networks: A system theoretic approach. IEEE Transactions on Automatic Control, 57:90–104, 2012.

    CrossRef  MathSciNet  MATH  Google Scholar 

  25. B.S. Rao and H.F. Durrant-Whyte. Fully decentralised algorithm for multisensor Kalman filtering. Control Theory and Applications, IEE Proceedings D, 138(5):413–420, Sep 1991.

    CrossRef  Google Scholar 

  26. I.D. Schizas, G.B. Giannakis, S.I. Roumeliotis, and A. Ribeiro. Consensus in ad hoc WSNs with noisy links—Part II: Distributed estimation and smoothing of random signals. IEEE Transactions on Signal Processing, 56(4):1650–1666, 2008.

    CrossRef  MathSciNet  MATH  Google Scholar 

  27. B. Shen, Z. Wang, and Y.S. Hung. Distributed \({H}_\infty \)-consensus filtering in sensor networks with multiple missing measurements: The finite-horizon case. Automatica, 46(10):1682–1688, 2010.

    CrossRef  MathSciNet  Google Scholar 

  28. B. Shen, Z. Wang, and X. Liu. A stochastic sampled-data approach to distributed \({H}_\infty \) filtering in sensor networks. IEEE Transactions on Circuits and Systems I: Regular Papers, 58(9):2237–2246, 2011.

    MathSciNet  Google Scholar 

  29. R. Smith and F. Hadaegh. Closed-loop dynamics of cooperative vehicle formations with parallel estimators and communication. IEEE Transactions on Automatic Control, 52(8):1404–1414, 2007.

    CrossRef  MathSciNet  MATH  Google Scholar 

  30. R.S. Smith. Covert misappropriation of networked control systems: Presenting a feedback structure. IEEE Control Systems, 35(1):82–92, 2015.

    CrossRef  MathSciNet  Google Scholar 

  31. M.V. Subbotin and R.S. Smith. Design of distributed decentralized estimators for formations with fixed and stochastic communication topologies. Automatica, 45(11):2491–2501, 2009.

    CrossRef  MathSciNet  MATH  Google Scholar 

  32. S.L. Sun and Z.L. Deng. Multi-sensor optimal information fusion Kalman filter. Automatica, 40(6):1017–1023, 2004.

    CrossRef  MathSciNet  MATH  Google Scholar 

  33. A. Teixeira, I. Shames, H. Sandberg, and K.H. Johansson. A secure control framework for resource-limited adversaries. Automatica, 51:135–148, 2015.

    CrossRef  MathSciNet  MATH  Google Scholar 

  34. V. Ugrinovskii. Distributed robust filtering with \({H}_\infty \) consensus of estimates. Automatica, 47(1):1–13, 2011.

    MathSciNet  MATH  Google Scholar 

  35. V. Ugrinovskii. Conditions for detectability in distributed consensus-based observer networks. IEEE Transactions on Automatic Control, 58:2659–2664, 2013.

    CrossRef  MathSciNet  MATH  Google Scholar 

  36. V. Ugrinovskii. Distributed robust estimation over randomly switching networks using \({H}_\infty \) consensus. Automatica, 49(1):160–168, 2013.

    MathSciNet  MATH  Google Scholar 

  37. V. Ugrinovskii. Gain-scheduled synchronization of parameter varying systems via relative \({H}_\infty \) consensus with application to synchronization of uncertain bilinear systems. Automatica, 50(11):2880–2887, 2014.

    MathSciNet  MATH  Google Scholar 

  38. V. Ugrinovskii and E. Fridman. A Round-Robin protocol for distributed estimation with \({H}_\infty \) consensus. Syst. Contr. Lett. 69:103–110, 2014.

    MathSciNet  MATH  Google Scholar 

  39. V. Ugrinovskii and C. Langbort. Distributed \({H}_\infty \) consensus-based estimation of uncertain systems via dissipativity theory. IET Control Theory and Applications, 5(12):1458–1469, 2011.

    MathSciNet  Google Scholar 

  40. J. Wu, L. Li, V. Ugrinovskii, and F. Allgöwer. Distributed filter design for cooperative \({H}_\infty \)-type estimation. In IEEE Multi-Conference on Systems and Control, Sydney, Australia, Sept. 2015.

    Google Scholar 

  41. J. Wu, V. Ugrinovskii, and F. Allgöwer. Cooperative estimation and robust synchronization of heterogeneous multi-agent systems with coupled measurements. IEEE Transactions on Control of Network Systems, 5(4), 2018.

    Google Scholar 

  42. M. Zamani and V. Ugrinovskii. Minimum-energy distributed filtering. In 53rd IEEE Conference on Decision and Control, Los Angeles, CA, 2014.

    Google Scholar 

  43. Q. Zhu, L. Bushnell, and T. Basar. Resilient distributed control of multi-agent cyber-physical systems. In D.C. Tarraf, editor, Control of Cyber-Physical Systems, volume 449 of Lecture Notes in Control and Information Sciences, pp. 301–316. Springer, 2013.

    Google Scholar 

Download references

Acknowledgements

This chapter is dedicated to the memory of Roberto Tempo whose friendship and support will never go unappreciated. The work was supported in part by the Australian Research Council and the University of New South Wales.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valery Ugrinovskii .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ugrinovskii, V. (2018). Cooperative Resilient Estimation of Uncertain Systems Subjected to a Biasing Interference. In: Başar, T. (eds) Uncertainty in Complex Networked Systems. Systems & Control: Foundations & Applications. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04630-9_2

Download citation