Skip to main content

Learning to Use Formulas and Variables for Constructing Computer Models in Lower Secondary Physics Education

  • Chapter
  • First Online:

Abstract

In physics education, models of modelling almost always contain a mathematization phase that links the real world with a mathematical representation for the purpose of describing, explaining, or predicting the phenomenon of interest. Mathematization often means the algebraization of a model of the real world in the form of an equation or formula. Success of students in modelling activities of this type depends on how well the students know what a variable and a formula are. This algebraic competency cannot be taken for granted: research has shown that students, both at lower and upper secondary level, have difficulties in selecting, using, and defining relevant variables and relating them algebraically. We argue that these difficulties ask for actions to let students develop the mathematical competency by explicit teaching the concepts and usage of variables and formulas. We discuss the design of a modelling learning path for lower secondary physics that incorporates a partial learning path with a focus on variables and formulas. In this modelling learning part, emphasis is on modelling with computers, in particular on system dynamics-based graphical modelling, because it enables students to study dynamic physical processes from a general point of view, allows treatment of subjects that are more realistic than usual in textbooks, enriches the students’ understanding of the notions of variable and formula, and gives them the opportunity to do what professional modellers do nowadays. We argue that graphical modelling can help lower secondary students develop understanding of the notions of variable and formula.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    By a direct relation, we mean a mathematical relationship between symbolized quantities in which at least one quantity can be isolated and written as a closed form expression of the other quantities.

References

  • Angell, A., Kind, P. M., Henriksen, E. K., & Gutterrud, Ø. (2008). An empirical-mathematical modelling approach to upper secondary physics. Physics Education, 43(3), 256–263.

    Article  Google Scholar 

  • Booth, L. R. (1984). Algebra: Children’s strategies and errors. Windsor: NFR-Nelson.

    Google Scholar 

  • Booth, L. R. (1988). Children’s difficulties in beginning algebra. In A. F. Coxford (Ed.), The ideas of algebra, K-12 (1988 Yearbook, pp. 20–32). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Byers, W. (2007). How mathematicians think: Using ambiguity, contraction an paradox to create mathematics. Princeton: Princeton University Press.

    Google Scholar 

  • Chonacki, N. (2004). STELLA: Growing upward, downward, and outward. Computing in Science and Engineering, 6(3), 8–15.

    Article  Google Scholar 

  • Doerr, H. M. (1996). Stella ten years later: A review of the literature. International Journal of Computers for Mathematical Learning, 1(2), 201–224.

    Article  Google Scholar 

  • Forrester, J. (1961). Industrial dynamics. Cambridge: MIT Press.

    Google Scholar 

  • Godfrey, A., & Thomas, M. O. J (2008). Student perspectives on equation: The transition from school to university. Mathematics Education Research Journal, 20(2), 71–92.

    Article  Google Scholar 

  • Groesser, S. N. (2012). Model-based learning with system dynamics. In N. M. Seel (Ed.), Encyclopedia of the sciences of learning (pp. 2303–2307). New York: Springer.

    Chapter  Google Scholar 

  • Hansson, Ö., & Grevholm, B. (2003). Preservice teachers’ conception about y = x + 5: Do they see a function? In N. A. Pateman, B. J. Dougherty, & J. Zilliox (Eds.), Proceedings of the 27th Conference of the International Group for the Psychology of Mathematics Education (Vol. 3, pp. 25–32). Honolulu: University of Hawaii. Retrieved 25 Feb 2017 from http://files.eric.ed.gov/fulltext/ED500858.pdf

  • Heck, A., Ellermeijer, T., & Kedzierska, E. (2010). Striking results with bouncing balls. In: C. P. Constantinou & N. Papadouris (Eds.), Physics curriculum design, development and validation (pp. 190–208). Selected papers of the GIREP 2008 conference. Nicosia: University of Cyprus.

    Google Scholar 

  • Heck, A., Kedzierska, E., & Ellermeijer, T. (2009). Design and implementation of an integrated computer working environment for doing mathematics and science. Journal of Computers in Mathematics and Science Teaching, 28(2), 147–161.

    Google Scholar 

  • Klieme, E., & Maichle, U. (1991). Erprobung eines Systems zur Modellbildung und Simulation im Unterricht. In P. Gorny (Ed.), Informatik und Schule 1991: Wege zur Vielfalt beim Lehren und Lernen (pp. 251–258). London: Springer.

    Chapter  Google Scholar 

  • Lane, D. C. (2008). The emergence and use of diagramming in system dynamics: A critical account. Systems Research and Behavioral Science, 25(1), 3–23.

    Article  Google Scholar 

  • Niedderer, H., Schecker, H., & Bethge, T. (1991). The role of computer-aided modelling in learning physics. Journal of Computer Assisted Learning, 7(2), 84–95.

    Article  Google Scholar 

  • Ormel, B. (2010). Het natuurwetenschappelijk modelleren van dynamische systemen: Naar een didactiek voor het voortgezet onderwijs [Scientific modelling of dynamical systems: Towards a pedagogical theory for secondary education] Doctoral dissertation, University of Utrecht. Utrecht: CD-β Press. Retrieved 25 Mar 2017 from https://dspace.library.uu.nl/handle/1874/37371

  • Sander, F., Schecker, H., & Niedderer, H. (2002). Computer tools in the lab—effects linking theory and experiment. In D. Psillos & H. Niedderer (Eds.), Teaching and learning in the science laboratory (pp. 219–230). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Savelsbergh, E. (Ed.). (2008). Modelleren en computermodellien in de β-vakken: Advies aan de gezamenlijke β-vernieuwingsacommissies [Modelling and computer models in the sciences: Advice to the joint curriculum innovation committees]. Utrecht: FIsme. Retrieved 23 Mar 2017 from http://www.nieuwenatuurkunde.nl/download/id/40/Modelleren.betavakken.pdf

    Google Scholar 

  • Schecker, H. (1998). Physik—Modellieren [Physics—Modelling]. Stuttgart: Ernst Klett Verlag. Retrieved 18 June 2018 from https://www.researchgate.net/publication/312097833_Physik_modellieren

  • Steed, M. (1992). Stella, a simulation construction kit: Cognitive process and educational implications. Journal of Computers in Mathematics and Science Teaching, 11(1), 39–52.

    Google Scholar 

  • Van Borkulo, S. P. (2009). The assessment of learning outcomes of computer modeling in secondary science education. Doctoral thesis, Twente University. Twente University. Retrieved 25 Mar 2017 from http://doc.utwente.nl/61674/1/thesis_S_van_Borkulo.pdf

  • Van Buuren, O. (2014). Development of a modelling learning path. Doctoral thesis, University of Amsterdam. Amsterdam: CMA. Retrieved 25 Feb 2017 from http://hdl.handle.net/11245/1.416568

    Google Scholar 

  • Van Buuren, O., Heck, A., & Ellermeijer, T. (2015). Understanding of relation structures of graphical models by lower secondary students. Research in Science Education, 46(5), 663–666.

    Google Scholar 

  • Van Buuren, O., Uylings, P., & Ellermeijer, T. (2011). A modelling learning path, integrated in the secondary school curriculum, starting from the initial phases of physics education. In W. Kaminski & M. Michelini (Eds.), Teaching and learning physics today: Challenges? Benefits? (pp. 609–621). Proceedings of selected papers of the GIREP-ICPE-MPTL conference 2010, Reims. Udine: University of Udine. Retrieved 25 Mar 2017 from http://iupap-icpe.org/publications/proceedings/GIREP-ICPE-MPTL2010_proceedings.pdf

  • Van Buuren, O., Uylings, P., & Ellermeijer, T. (2012). The use of formulas by lower level secondary school students when building computer models. In A. Lindell, A.-L. Käkönen, & J. Viiri (Eds.), Physics alive (pp. 140–149). Proceedings of the GIREP-EPEC Conference 2011, Jyväskylä. Retrieved 25 Mar 2017 from http://urn.fi/URN:ISBN:978-951-39-4801-6

  • Van Joolingen, W. R., de Jong, T., Lazonder, A. W., Savelsbergh, E. R., & Manlove, S. (2005). Co-Lab: Research and development of an online learning environment for collaborative scientific discovery learning. Computers in Human Behavior, 21(4), 671–688.

    Article  Google Scholar 

  • Westra, R. (2008). Learning and teaching ecosystem behaviour in secondary education. Doctoral thesis, University of Utrecht). Utrecht: CD-β Press. Retrieved 25 Mar 2017 from https://dspace.library.uu.nl/handle/1874/26253

  • Zwickl, B. M., Hu, D., Finkelstein, N., & Lewandowski, H. J. (2015). Model-based reasoning in the physics laboratory: Framework and initial results. Physical Review Special Topics—Physics Education Research, 11, 020113. https://doi.org/10.1103/PhysRevSTPER.11.020113

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Onne van Buuren .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buuren, O.v., Heck, A. (2019). Learning to Use Formulas and Variables for Constructing Computer Models in Lower Secondary Physics Education. In: Pospiech, G., Michelini, M., Eylon, BS. (eds) Mathematics in Physics Education. Springer, Cham. https://doi.org/10.1007/978-3-030-04627-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04627-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04626-2

  • Online ISBN: 978-3-030-04627-9

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics