Skip to main content

Cannabis in Veterinary Medicine: Cannabinoid Therapies for Animals

  • Chapter
  • First Online:
Nutraceuticals in Veterinary Medicine

Abstract

The use of cannabis for animal species is an area of growing interest, largely due to the therapeutic benefits being observed for humans and animals in the era of cannabis legalization. The close relationship humans have with their pets and other veterinary species has led to a renewed interest in the possibility and promise of cannabis to treat similar health issues in the animal community. This chapter explores the literature available on cannabis, its interactions with the endocannabinoid system, and how animal species interact with various formulations and cannabis treatments. A brief overview of the biology, chemistry, and history of cannabis is discussed with the relevance to veterinary species in mind. The pharmacologically active components are discussed with both anecdotal and objective, evidence-based, and clinical data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aggarwal BB, Shishodia S (2006) Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 71:1397–1421

    CAS  PubMed  Google Scholar 

  • Ahmed SA, Ross SA, Slade D et al (2008) Cannabinoid ester constituents from high-potency Cannabis sativa. J Nat Prod 71:536–542

    CAS  PubMed  PubMed Central  Google Scholar 

  • Al-Omari SM (2007) The effect of thujone and myrcene on diabetes mellitus in albino rats. Faculty of Graduate Studies University of Jordan

    Google Scholar 

  • Aydin E, Türkez H, TaÅŸdemir Åž (2013) Anticancer and antioxidant properties of terpinolene in rat brain cells. Arch Ind Hyg Toxicol 64:415–424

    CAS  Google Scholar 

  • Babson KA, Sottile J, Morabito D (2017) Cannabis, cannabinoids, and sleep: A review of the literature. Curr Psychiatry Rep 19:23

    PubMed  Google Scholar 

  • Barni-Comparini I, Ferri S, Centini F (1984) Cannabinoid level in the leaves as a tool for the early discrimination of cannabis chemiovariants. Forensic Sci Int 24:37–42

    CAS  PubMed  Google Scholar 

  • Bartner LR, McGrath S, Rao S, Hyatt LK et al (2018) Pharmacokinetics of cannabidiol administered by three delivery methods at 2 different dosages to healthy dogs. Can J Vet Res 82:178–183

    PubMed  PubMed Central  Google Scholar 

  • Basavarajappa BS (2007) Neuropharmacology of the endocannabinoid signaling system-molecular mechanisms, biological actions and synaptic plasticity. Curr Neuropharmacol 5:81–97

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bátkai S et al (2004) Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation 110:1996–2002

    PubMed  PubMed Central  Google Scholar 

  • Bauer JE (2011) Therapeutic use of fish oils in companion animals. J Am Vet Med Assoc 239:1441–1451

    CAS  PubMed  Google Scholar 

  • Beale C, Broid SJ, Chye Y et al (2018) Prolonged cannabidiol treatment effects on hippocampal subfield volumes in current cannabis users. Cannabis Cannabinoid Res 3:94–107

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bénard G, Massa F, Puente N et al (2012) Mitochondrial CB 1 receptors regulate neuronal energy metabolism. Nat Neurosci 15:558–564

    PubMed  Google Scholar 

  • Bergamaschi MM, Queiroz RH, Chagas MH et al (2011) Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naive social phobia patients. Neuropsychopharmacology 36(6):1219–1226

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bolognini D et al (2013) Cannabidiolic acid prevents vomiting in suncus murinus and nausea-induced behaviour in rats by enhancing 5-HT1A receptor activation. Br J Pharmacol 168:1456–1470

    CAS  PubMed  PubMed Central  Google Scholar 

  • Booth D (2009) Evaluating the quality of nutraceuticals to help improve your patient’s quality of life. Paper presented at the Proceedings North American Veterinary Conference

    Google Scholar 

  • Borrelli F, Fasolino I, Romano B et al (2013) Beneficial effect of the non-psychotropic plant cannabinoid cannabigerol on experimental inflammatory bowel disease. Biochem Pharmacol 85(9):1306–1316

    CAS  PubMed  Google Scholar 

  • Brenneisen R, ElSohly MA (1988) Chromatographic and spectroscopic profiles of cannabis of different origins: Part I. J Forensic Sci 33:1385–1404

    CAS  PubMed  Google Scholar 

  • Broséus J, Anglada F, Esseiva P (2010) The differentiation of fibre- and drug type cannabis seedlings by gas chromatography/mass spectrometry and chemometric tools. Forensic Sci Int 200:87–92

    PubMed  Google Scholar 

  • Callaway JC (2004) Hempseed as a nutritional resource: an overview. Euphytica 140:65–72

    Google Scholar 

  • Calleja MA, Vieites JM, Montero-Meterdez T et al (2013) The antioxidant effect of β-caryophyllene protects rat liver from carbon tetrachloride-induced fibrosis by inhibiting hepatic stellate cell activation. Br J Nutr 109:394–401

    CAS  PubMed  Google Scholar 

  • Camilleri M, Kolar GJ, Vazquez-Roque MI et al (2013) Cannabinoid receptor 1 gene and irritable bowel syndrome: phenotype and quantitative traits. Am J Physiol Gastrointest Liver Physiol 304(5):G553–G560

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campora L, Miraqliotta V, Ricci E et al (2012) Cannabinoid receptor type 1 and 2 expression in the skin of healthy dogs and dogs with atopic dermatitis. Am J Vet Res 73:988–995

    PubMed  Google Scholar 

  • Carlini EA, Cunha JM (1981) Hypnotic and antiepileptic effects of cannabidiol. J Clin Pharmacol 21:417S–427S

    CAS  PubMed  Google Scholar 

  • Chang YH, Windish DM (2009) Cannabinoid hyperemesis relieved by compulsive bathing. In: Mayo Clinic Proceedings, vol 1. Elsevier, Amsterdam, pp 76–78

    Google Scholar 

  • Chaves JS, Leal PC, Pianowisky L et al (2008) Pharmacokinetics and tissue distribution of the sesquiterpene α-humulene in mice. Planta Med 74:1678–1683

    CAS  PubMed  Google Scholar 

  • Chen R et al (2013) Δ9-THC-caused synaptic and memory impairments are mediated through COX-2 signaling. Cell 155:1154–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chioca LR et al (2013) Anxiolytic-like effect of lavender essential oil inhalation in mice: participation of serotonergic but not GABAA/benzodiazepine neurotransmission. J Ethnopharmacol 147:412–418

    CAS  PubMed  Google Scholar 

  • Ciftci O, Ozdemir I, Tanyildizi S et al (2011) Antioxidative effects of curcumin, β-myrcene and 1, 8-cineole against 2, 3, 7, 8-tetrachlorodibenzo-p-dioxin-induced oxidative stress in rats liver. Toxicol Ind Health 27:447–453

    CAS  PubMed  Google Scholar 

  • Condie R, Herring A, Koh WS et al (1996) Cannabinoid inhibition of adenylate cyclase-mediated signal transduction and interleukin 2 (IL-2) expression in the murine T-cell line, EL4. IL-2. J Biol Chem 271:13175–13183

    CAS  PubMed  Google Scholar 

  • Consroe P, Wolkin A (1977) Cannabidiol—antiepileptic drug comparisons and interactions in experimentally induced seizures in rats. J Pharmacol Exp Ther 201:26–32

    CAS  PubMed  Google Scholar 

  • Crippa JA, Zuardi AW, Martin-Santos R et al (2009) Cannabis and anxiety: a critical review of the evidence. Hum Psychopharmacol 24(7):515–523

    CAS  PubMed  Google Scholar 

  • Crowell PL, Gould MN (1994) Chemoprevention and therapy of cancer by d-limonene. Crit Rev Oncog 5(1):1–22

    CAS  PubMed  Google Scholar 

  • Dall’Aglio C, Mercati F, Pascucci L et al (2010) Immunohistochemical localization of CB1 receptor in canine salivary glands. Vet Res Commun 34:9–12

    Google Scholar 

  • Dalle Carbonare M, Del Giudice E, Stecca A et al (2008) A saturated N-acylethanolamine other than N-palmitoyl ethanolamine with anti-inflammatory properties: a neglected story. J Neuroendocrinol 20:26–34

    CAS  PubMed  Google Scholar 

  • De Petrocellis L, Melck D, Bisogno T et al (1999) Finding of the endocannabinoid signalling system in Hydra, a very primitive organism: possible role in the feeding response. Neuroscience 92:377–387

    PubMed  Google Scholar 

  • Deferne JL, Pate DW (1996) Hemp seed oil: a source of valuable essential fatty acids. J Int Hemp Assoc 3(1):4–7

    Google Scholar 

  • Demirakca T, Sartorius A, Ende G et al (2011) Diminished gray matter in the hippocampus of cannabis users: Possible protective effects of cannabidiol. Drug Alcohol Depend 114:242–245

    CAS  PubMed  Google Scholar 

  • Devane WA, Hanus L, Breuer A et al (1992) Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science 258:1946–1949

    CAS  PubMed  Google Scholar 

  • Devinsky O, Cross JH, Wright S (2017) Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med 376(21):2011–2020

    CAS  PubMed  Google Scholar 

  • Dewey WL (1986) Cannabinoid pharmacology. Pharmacol Rev 38(2):151–178

    CAS  PubMed  Google Scholar 

  • Directive C (2013) Common catalogue of varieties of agricultural plant species. Off J Eur Union 379

    Google Scholar 

  • Do Vale TG, Furtado EC, Santos J Jr et al (2002) Central effects of citral, myrcene and limonene, constituents of essential oil chemotypes from Lippia alba (Mill.) NE Brown. Phytomedicine 9:709–714

    PubMed  Google Scholar 

  • Drugs UNOo (2009) Recommended methods for the identification and analysis of cannabis and cannabis products. United Nations Publications, Vienna

    Google Scholar 

  • Elmes MW, Kaczocha M, Berger ST et al (2015) Fatty acid-binding proteins (FABPs) are intracellular carriers for Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD). J Biol Chem 290:8711–8721

    CAS  PubMed  PubMed Central  Google Scholar 

  • ElSohly MA, Slade D (2005) Chemical constituents of marijuana: the complex mixture of natural cannabinoids. Life Sci 78:539–548

    CAS  PubMed  Google Scholar 

  • Esposito G, De Filippis D, Carnuccio R et al (2006) The marijuana component cannabidiol inhibits β-amyloid-induced tau protein hyperphosphorylation through Wnt/β-catenin pathway rescue in PC12 cells. J Mol Med 84:253–258

    CAS  PubMed  Google Scholar 

  • Esposito G, Scuderi C, Savani C (2007) Cannabidiol in vivo blunts β-amyloid induced neuroinflammation by suppressing IL-1β and iNOS expression. Br J Pharmacol 151:1272–1279

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eubanks LM, Rogers CJ, Beuscher AE IV et al (2006) A molecular link between the active component of marijuana and Alzheimer's disease pathology. Mol Pharm 3:773–777

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fan P (1995) Cannabinoid agonists inhibit the activation of 5-HT3 receptors in rat nodose ganglion neurons. J Neurophysiol 73(2):907–910

    CAS  PubMed  Google Scholar 

  • Fernandes ES, Passos GF, Medeiros R et al (2007) Anti-inflammatory effects of compounds alpha-humulene and (−)-trans-caryophyllene isolated from the essential oil of Cordia verbenacea. Eur J Pharmacol 569:228–236

    CAS  PubMed  Google Scholar 

  • Fischedick JT, Hazekamp A, Erkelens T et al (2010) Metabolic fingerprinting of Cannabis sativa L., cannabinoids and terpenoids for chemotaxonomic and drug standardization purposes. Phytochemistry 71:2058–2073

    CAS  PubMed  Google Scholar 

  • Freundt-Revilla J, Kegler K, Baumgärtner W et al (2017) Spatial distribution of cannabinoid receptor type 1 (CB1) in normal canine central and peripheral nervous system. PLoS One 12:e0181064

    PubMed  PubMed Central  Google Scholar 

  • Fujita W, Gomes I, Devi LA (2014) Revolution in GPCR signalling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10. Br J Pharmacol 171(18):4155–4176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galindo L, Moreno E, López-Armenta F et al (2018) Cannabis users show enhanced expression of CB1-5HT2A receptor heteromers in olfactory neuroepithelium cells. Mol Neurobiol:1–15

    Google Scholar 

  • Gallily R, Yekhtin Z, HanuÅ¡ LO (2015) Overcoming the bell-shaped dose-response of cannabidiol by using cannabis extract enriched in cannabidiol. Pharmacol Pharm 6:75–85

    CAS  Google Scholar 

  • Gamble L-J et al (2018) Pharmacokinetics, safety, and clinical efficacy of cannabidiol treatment in osteoarthritic dogs. In: Proceedings of the World Rehabilitation Summit (IAVRPT), ACVSMR track; July 31, Knoxville, TN

    Google Scholar 

  • Gaoni Y, Mechoulam R (1964) Isolation, structure, and partial synthesis of an active constituent of hashish. J Am Chem Soc 86:1646–1647

    CAS  Google Scholar 

  • Gertsch J (2017) Cannabimimetic phytochemicals in the diet–an evolutionary link to food selection and metabolic stress adaptation? Br J Pharmacol 174:1464–1483

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gertsch J, Schoop R, Kuenzle U et al (2004) Echinacea alkylamides modulate TNF-α gene expression via cannabinoid receptor CB2 and multiple signal transduction pathways. FEBS Lett 577:563–569

    CAS  PubMed  Google Scholar 

  • Gertsch J, Leonti M, Raduner S et al (2008a) Beta-caryophyllene is a dietary cannabinoid. Proc Natl Acad Sci 105:9099–9104

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gertsch J, Raduner S, Tytgat J et al (2008b) Analgesic and neuropsychological effects of Echinacea N-alkylamides. Planta Med 74(9):1014–PA302

    Google Scholar 

  • Gesell FK, Zoerner AA, Brauer C et al (2013) Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder. BMC Vet Res 9:262

    PubMed  PubMed Central  Google Scholar 

  • Glenn H (2017) A stakeholder review of the feasibility of industrial hemp by-products as animal feed ingredients: a report to the Colorado legislature in response to SB17–109

    Google Scholar 

  • Griffin G, Wray EJ, Tao Q et al (1999) Evaluation of the cannabinoid CB2 receptor-selective antagonist, SR144528: further evidence for cannabinoid CB2 receptor absence in the rat central nervous system. Eur J Pharmacol 377:117–125

    CAS  PubMed  Google Scholar 

  • Gulluni N, Re T, Aoiacono I et al (2018) Cannabis essential oil: a preliminary study for the evaluation of the brain effects. Evid Based Complement Altern Med 2018:1709182

    Google Scholar 

  • Guzmán-Gutiérrez SL, Bonilla-Jaime H et al (2015) Linalool and β-pinene exert their antidepressant-like activity through the monoaminergic pathway. Life Sci 128:24–29

    PubMed  Google Scholar 

  • Hampson A, Grimaldi M, Axelrod J et al (1998) Cannabidiol and (−) Δ9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci USA 95:8268–8273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hampson AJ, Axelrod J, Grimaldi M (2003) Cannabinoids as antioxidants and neuroprotectants. Google Patents

    Google Scholar 

  • Han J et al (2012) Acute cannabinoids impair working memory through astroglial CB 1 receptor modulation of hippocampal LTD. Cell 148:1039–1050

    CAS  PubMed  Google Scholar 

  • Hand M, Thatcher C, Remillard R et al (2010) Small animal clinical nutrition. Mark Morris Institute, Topeka

    Google Scholar 

  • Hartsel JA, Eades J, Hickory B, Makriyannis A (2016) Nutraceuticals, efficacy, safety and toxicity: Cannabis sativa and Hemp. Elsevier, Amsterdam, pp 735–754

    Google Scholar 

  • Haustein M, Ramer R, Linnebacher M et al (2014) Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochem Pharmacol 92:312–325

    CAS  PubMed  Google Scholar 

  • Hayakawa K et al (2008) Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism. Neuropharmacology 55:1280–1286

    CAS  PubMed  Google Scholar 

  • Heitland I, Klumpers F, Oosting RS et al (2012) Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1. Transl Psychiatry 2:e162

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henry P (2017) Cannabis chemovar classification: terpenes hyper-classes and targeted genetic markers for accurate discrimination of flavours and effects. Peer J Prepr 5:e3307v3301

    Google Scholar 

  • Hepburn C, Walsh S, Wainwright C (2011) 17 Cannabidiol as an anti-arrhythmic, the role of the CB1 receptors. Heart 97:e8

    Google Scholar 

  • Hill MN, McLaughlin RJ, Morrish AC et al (2009) Suppression of amygdalar endocannabinoid signaling by stress contributes to activation of the hypothalamic–pituitary–adrenal axis. Neuropsychopharmacology 34:2733

    CAS  PubMed  Google Scholar 

  • Hill AJ, Williams CM, Whalley BJ et al (2012) Phytocannabinoids as novel therapeutic agents in CNS disorders. Pharmacol Ther 133:79–97

    CAS  PubMed  Google Scholar 

  • Hillig KW, Mahlberg PG (2004) A chemotaxonomic analysis of cannabinoid variation in Cannabis (Cannabaceae). Am J Bot 91:966–975

    CAS  PubMed  Google Scholar 

  • Hirota R et al (2012) Limonene inhalation reduces allergic airway inflammation in Dermatophagoides farinae-treated mice. Inhal Toxicol 24:373–381

    CAS  PubMed  Google Scholar 

  • Ho B, Uezono Y, Takada S et al (1999) Coupling of the expressed cannabinoid CB1 and CB2 receptors to phospholipase C and G protein-coupled inwardly rectifying K+ channels. Receptors Channels 6:363–374

    CAS  PubMed  Google Scholar 

  • Howlett AC (2002) The cannabinoid receptors. Prostaglandins Other Lipid Mediat 68:619–631

    PubMed  Google Scholar 

  • Howlett A, Fleming R (1984) Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes. Mol Pharmacol 26:532–538

    CAS  PubMed  Google Scholar 

  • Ito K, Ito M (2011) Sedative effects of vapor inhalation of the essential oil of Microtoena patchoulii and its related compounds. J Nat Med 65:336–343

    CAS  PubMed  Google Scholar 

  • Iwata N, Kitanaka S (2011) New cannabinoid-like chromane and chromene derivatives from Rhododendron anthopogonoides. Chem Pharm Bull 59:1409–1412

    CAS  Google Scholar 

  • Izzo AA, Borrelli F, Capasso R et al (2009) Non-psychotropic plant cannabinoids: new therapeutic opportunities from an ancient herb. Trends Pharmacol Sci 30:515–527

    CAS  PubMed  Google Scholar 

  • Jiang W, Zhang Y, Xiao L et al (2005) Cannabinoids promote embryonic and adult hippocampus neurogenesis and produce anxiolytic-and antidepressant-like effects. J Clin Invest 115:3104–3116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kallendrusch S, Kremzow S, Nowicki M et al (2013) The G protein-coupled receptor 55 ligand l-α-lysophosphatidylinositol exerts microglia-dependent neuroprotection after excitotoxic lesion. Glia 61:1822–1831

    PubMed  Google Scholar 

  • Kalra EK (2003) Nutraceutical-definition and introduction. AAPS Pharm Sci 5(3):5. http://www.pharmsci.org

    Google Scholar 

  • Kapoor R, Huang Y-S (2006) https://www.ingentaconnect.com/content/ben/cpb/2006/00000007/00000006/art00016?crawler=true

  • King A, Lodola A, Carmi C et al (2009) A critical cysteine residue in monoacylglycerol lipase is targeted by a new class of isothiazolinone-based enzyme inhibitors. Br J Pharmacol 157:974–983

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klauke A-L, Racz I, Pradier B et al (2014) The cannabinoid CB2 receptor-selective phytocannabinoid beta-caryophyllene exerts analgesic effects in mouse models of inflammatory and neuropathic pain. Eur Neuropsychopharmacol 24:608–620

    CAS  PubMed  Google Scholar 

  • Klein TW, Lane B, Newton CA, Friedman H (2000) The cannabinoid system and cytokine network. Proc Soc Exp Biol Med 225:1–8

    CAS  PubMed  Google Scholar 

  • Koch M, Varela L, Kim JG et al (2015) Hypothalamic POMC neurons promote cannabinoid-induced feeding. Nature 519:45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kogan L, Hellyer P, Robinson N (2015) Consumers perceptions of animal hemp products. J Am Holist Vet Med Assoc 14:34–35

    Google Scholar 

  • Kogan L, Hellyer P, Schoenfeld-Tacher R (2018) Dog owner’s use and perceptions of cannabis products. J Am Holist Vet Med Assoc 4:34–35

    Google Scholar 

  • Komiya M, Takeuchi T, Harada E (2006) Lemon oil vapor causes an anti-stress effect via modulating the 5-HT and DA activities in mice. Behav Brain Res 172:240–249

    CAS  PubMed  Google Scholar 

  • Lafourcade M, Larrieu T, Mato S et al (2011) Nutritional omega-3 deficiency abolishes endocannabinoid-mediated neuronal functions. Nat Neurosci 14:345

    CAS  PubMed  Google Scholar 

  • Laun AS, Song Z-H (2017) GPR3 and GPR6, novel molecular targets for cannabidiol. Biochem Biophys Res Commun 490:17–21

    CAS  PubMed  Google Scholar 

  • Le Foll B, Trigo JM, Sharkey KA et al (2013) Cannabis and Δ9-tetrahydrocannabinol (THC) for weight loss? Med Hypotheses 80:564–567

    PubMed  Google Scholar 

  • Legault J, Pichette A (2007) Potentiating effect of β-caryophyllene on anticancer activity of α-humulene, isocaryophyllene and paclitaxel. J Pharm Pharmacol 59:1643–1647

    CAS  PubMed  Google Scholar 

  • Leizer C, Ribnicky D, Poulev A, Dushenkov S, Raskin I (2000) The composition of hemp seed oil and its potential as an important source of nutrition. J Nutraceut Funct Med Foods 2(4):35–53. https://www.tandfonline.com/doi/abs/10.1300/J133v02n04_04

    Google Scholar 

  • Lewis MA, Russo EB, Smith KM (2018) Pharmacological foundations of cannabis chemovars. Planta Med 84:225–233

    CAS  PubMed  Google Scholar 

  • Ligresti A, Moriello AS, Starowicz K et al (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318:1375–1387

    CAS  PubMed  Google Scholar 

  • Lima NG et al (2013) Anxiolytic-like activity and GC–MS analysis of (R)-(+)-limonene fragrance, a natural compound found in foods and plants. Pharmacol Biochem Behav 103:450–454

    CAS  PubMed  Google Scholar 

  • Lissoni P, Resentini M, Mauri R et al (1986) Effects of tetrahydrocannabinol on melatonin secretion in man. Horm Metabol Res 18:77–78

    CAS  Google Scholar 

  • Lorenzetti BB, Souza GE, Sarti SJ et al (1991) Myrcene mimics the peripheral analgesic activity of lemongrass tea. J Ethnopharmacol 34:43–48

    CAS  PubMed  Google Scholar 

  • MacCallum CA, Russo EB (2018) Practical considerations in medical cannabis administration and dosing. Eur J Intern Med 49:12–19

    CAS  PubMed  Google Scholar 

  • Mackie K (2006) Cannabinoid receptors as therapeutic targets. Annu Rev Pharmacol Toxicol 46:101–122

    CAS  PubMed  Google Scholar 

  • Mackie K (2008) Cannabinoid receptors: where they are and what they do. J Neuroendocrinol 20:10–14

    CAS  PubMed  Google Scholar 

  • Makriyannis A (2014) 2012 Division of medicinal chemistry award address. Trekking the cannabinoid road: a personal perspective. J Med Chem 57:3891–3911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marcu JP, Schechter JB (2016) Molecular pharmacology of CB1 and CB2 cannabinoid receptors. In: Neuropathology of Drug Addictions and Substance Misuse. Elsevier, London, pp 713–721

    Google Scholar 

  • McAllister SD, Christian RT, Horowitz MP et al (2007) Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol Cancer Ther 6:2921–2927

    CAS  PubMed  Google Scholar 

  • McGrath S (2018) Cannabis clinical trials in dogs—CSU paving the way. In: Proceedings of the AVMA Annual Conference, Denver, CO, July, 2018

    Google Scholar 

  • McGrath S, Bartner L, Rao S, et al (2018) A report of adverse effects associated with the administration of cannabidiol in healthy dogs. J Am Holistic Vet Med Assoc. Fall 2018

    Google Scholar 

  • McHugh D, Hu SS, Rimmerman N et al (2010) N-arachidonoyl glycine, an abundant endogenous lipid, potently drives directed cellular migration through GPR18, the putative abnormal cannabidiol receptor. BMC Neurosci 11:44

    PubMed  PubMed Central  Google Scholar 

  • McPartland J, Marzo VD, Petrocellis LD et al (2001) Cannabinoid receptors are absent in insects. J Comp Neurol 436:423–429

    CAS  PubMed  Google Scholar 

  • McPartland JM, Agraval J, Glesson D et al (2006) Cannabinoid receptors in invertebrates. J Evol Biol 19:366–373

    CAS  PubMed  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus L et al (1995) Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    CAS  PubMed  Google Scholar 

  • Meola SD, Tearney CC, Haas SA et al (2012) Evaluation of trends in marijuana toxicosis in dogs living in a state with legalized medical marijuana: 125 dogs (2005–2010). J Vet Emerg Crit Care 22:690–696

    Google Scholar 

  • Mercati F, Dall’Aglio C, Pascucci L et al (2012) Identification of cannabinoid type 1 receptor in dog hair follicles. Acta Histochem 114:68–71

    CAS  PubMed  Google Scholar 

  • Miyazawa M, Yamafuji C (2005) Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J Agric Food Chem 53:1765–1768

    CAS  PubMed  Google Scholar 

  • Mo X-L, Yang Z, Tao Y-X (2014) Targeting GPR119 for the potential treatment of type 2 diabetes mellitus. Prog Mol Biol Transl Sci 121:95–131

    CAS  PubMed  Google Scholar 

  • Moon AM, Buckley SA, Mark NM (2018) Successful treatment of cannabinoid hyperemesis syndrome with topical capsaicin. ACG Case Rep J 5:e3. https://doi.org/10.14309/crj.2018.3

    Article  PubMed  PubMed Central  Google Scholar 

  • Morello G, Imperatore R, Palomba L et al (2016) Orexin-A represses satiety-inducing POMC neurons and contributes to obesity via stimulation of endocannabinoid signaling. Proc Natl Acad Sci USA 113:4759–4764

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morena M, Patel S, Bains JS et al (2016) Neurobiological interactions between stress and the endocannabinoid system. Neuropsychopharmacology 41:80

    CAS  PubMed  Google Scholar 

  • Moreno-Sanz G (2016) Can you pass the acid test? Critical review and novel therapeutic perspectives of Δ9-tetrahydrocannabinolic acid A. Cannabis Cannabinoid Res 1(1):124–130

    CAS  PubMed  PubMed Central  Google Scholar 

  • Muniyappa R, Sable S, Ouwekerk R et al (2013) Metabolic effects of chronic cannabis smoking. Diabetes Care 36:2415–2422

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nadal X, Del Río C, Casano S et al (2017) Tetrahydrocannabinolic acid is a potent PPARγ agonist with neuroprotective activity. Br J Pharmacol 174:4263–4276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ndong C, O'donnell D, Ahmad S et al (2011) Cloning and pharmacological characterization of the dog cannabinoid CB2 receptor. Eur J Pharmacol 669:24–31

    CAS  PubMed  Google Scholar 

  • Niederhoffer N, Szabo B (1999) Effect of the cannabinoid receptor agonist WIN55212-2 on sympathetic cardiovascular regulation. Br J Pharmacol 126(2):457–466

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niederhoffer N, Szabo B (2000) Cannabinoids cause central sympathoexcitation and bradycardia in rabbits. J Pharmacol Exp Ther 294(2):707–713

    CAS  PubMed  Google Scholar 

  • Nissen L, Zatta A, Stefanini I et al (2010) Characterization and antimicrobial activity of essential oils of industrial hemp varieties (Cannabis sativa L.). Fitoterapia 81:413–419

    CAS  PubMed  Google Scholar 

  • Ottani A, Leone S, Sandrini M et al (2006) The analgesic activity of paracetamol is prevented by the blockade of cannabinoid CB1 receptors. Eur J Pharmacol 531:280–281

    CAS  PubMed  Google Scholar 

  • Pacioni G et al (2015) Truffles contain endocannabinoid metabolic enzymes and anandamide. Phytochemistry 110:104–110

    CAS  PubMed  Google Scholar 

  • Parray HA, Yun JW (2016) Cannabidiol promotes browning in 3T3-L1 adipocytes. Mol Cell Biochem 416:131–139

    CAS  PubMed  Google Scholar 

  • Patel S, Kingsley PJ, Mackie K et al (2009) Repeated homotypic stress elevates 2-arachidonoylglycerol levels and enhances short-term endocannabinoid signaling at inhibitory synapses in basolateral amygdala. Neuropsychopharmacology 34:2699

    CAS  PubMed  Google Scholar 

  • Pertwee RG (2000) Cannabinoid receptor ligands: clinical and neuropharmacological considerations, relevant to future drug discovery and development. Exp Opin Invest Drugs 9:1553–1571

    CAS  Google Scholar 

  • Pertwee RG (2001) Cannabinoid receptors and pain. Prog Neurobiol 63:569–611

    CAS  PubMed  Google Scholar 

  • Pertwee RG (2005) Pharmacological actions of cannabinoids. In: Cannabinoids. Springer, Cham, pp 1–51

    Google Scholar 

  • Pertwee RG (2008) The diverse CB1 and CB2 receptor pharmacology of three plant cannabinoids: Δ9-tetrahydrocannabinol, cannabidiol and Δ9-tetrahydrocannabivarin. Br J Pharmacol 153:199–215

    CAS  PubMed  Google Scholar 

  • Pertwee Handbook of Cannabis (2014) https://www.biblio.com/book/handbook-cannabis-roger-pertwee-ed/d/1139894567?aid=frg%26utm_source=google%26utm_medium=product%26utm_campaign=feed-details%26gclid=EAIaIQobChMIsrjyvqy04QIVXSCtBh0gMwygEAYYASABEgIB1fD_BwE

  • Pirone A, Lenzi C, Coli A et al (2015) Preferential epithelial expression of type-1 cannabinoid receptor (CB1R) in the developing canine embryo. Springerplus 4:804

    PubMed  PubMed Central  Google Scholar 

  • Pollan M (2001) The botany of desire: a plant’s-eye view of the world. In: How to change your mind: what the new science of psychedelics teaches us about consciousness, dying, addiction, depression, and transcendence. Random house trade paperbacks

    Google Scholar 

  • Pollastro F, De Petrocellis L, Schiano-Moriello A et al (2017) Amorfrutin-type phytocannabinoids from Helichrysum umbraculigerum. Fitoterapia 123:13–17

    CAS  PubMed  Google Scholar 

  • Prates Ong T, Testoni Cardozo M, de Conti A et al (2012) Chemoprevention of hepatocarcinogenesis with dietary isoprenic derivatives: cellular and molecular aspects. Curr Cancer Drug Targets 12:1173–1190

    Google Scholar 

  • Raduner S et al (2006) Alkylamides from Echinacea are a new class of cannabinomimetics Cannabinoid type 2 receptor-dependent and-independent immunomodulatory effects. J Biol Chem 281:14192–14206

    CAS  PubMed  Google Scholar 

  • Radwan MM, ElSohly MA, Slade D et al (2008) Non-cannabinoid constituents from a high potency Cannabis sativa variety. Phytochemistry 69(14):2627–2633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rao V, Menezes A, Viana G (1990) Effect of myrcene on nociception in mice. J Pharm Pharmacol 42:877–878

    CAS  PubMed  Google Scholar 

  • Rashidi H, Akhtar MT, van der Kooy F et al (2009) Hydroxylation and further oxidation of Δ9-tetrahydrocannabinol by alkane-degrading bacteria. Appl Environ Microbiol 75(22):7135–7141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reddy AT, Lakshmi SP, Reddy RC (2012) Murine model of allergen induced asthma. J Visual Exp, JoVE

    Google Scholar 

  • Ribeiro A et al (2015) Cannabidiol improves lung function and inflammation in mice submitted to LPS-induced acute lung injury. Immunopharmacol Immunotoxicol 37:35–41

    CAS  PubMed  Google Scholar 

  • Riedel G, Fadda P, McKillop-Smith S et al (2009) Synthetic and plant-derived cannabinoid receptor antagonists show hypophagic properties in fasted and non-fasted mice. Br J Pharmacol 156:1154–1166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rock EM, Parker LA (2013) Effect of low doses of cannabidiolic acid and ondansetron on LiCl-induced conditioned gaping (a model of nausea-induced behaviour) in rats. Br J Pharmacol 169:685–692

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rock E, Kopstick R, Limebeer C et al (2013) Tetrahydrocannabinolic acid reduces nausea-induced conditioned gaping in rats and vomiting in Suncus murinus. Br J Pharmacol 170:641–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rock EM et al (2014) A comparison of cannabidiolic acid with other treatments for anticipatory nausea using a rat model of contextually elicited conditioned gaping. Psychopharmacology 231:3207–3215

    CAS  PubMed  Google Scholar 

  • Roehrs T, Roth T (2017) Medication and substance abuse. In: Principles and practice of sleep medicine, 6th edn. Elsevier, Philadelphia, pp 1380–1389.e1384

    Google Scholar 

  • Rogerio AP, Andrade EL, Leite DF et al (2009) Preventive and therapeutic anti-inflammatory properties of the sesquiterpene α-humulene in experimental airways allergic inflammation. Br J Pharmacol 158:1074–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romano B, Borrelli F, Pagano E et al (2014) Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol. Phytomedicine 21:631–639

    CAS  PubMed  Google Scholar 

  • Rufino AT, Ribeiro M, Sousa C et al (2015) Evaluation of the anti-inflammatory, anti-catabolic and pro-anabolic effects of E-caryophyllene, myrcene and limonene in a cell model of osteoarthritis. Eur J Pharmacol 750:141–150

    CAS  PubMed  Google Scholar 

  • Russo EB (2011) Taming THC: potential cannabis synergy and phytocannabinoid-terpenoid entourage effects. Br J Pharmacol 163:1344–1364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russo EB (2016a) Beyond cannabis: plants and the endocannabinoid system. Trends Pharmacol Sci 37:594–605

    CAS  PubMed  Google Scholar 

  • Russo EB (2016b) Clinical endocannabinoid deficiency reconsidered: Current research supports the theory in migraine, fibromyalgia, irritable bowel, and other treatment-resistant syndromes. Cannabis Cannabinoid Res 1:154–165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russo E, Etges T, Stott C, et al (2011) Sativex safety profile is improving over time. International Cannabinoid Research Society, St Charles, pp 1122–1131

    Google Scholar 

  • Saito VM, Rezende RM, Teixeira AL (2012) Cannabinoid modulation of neuroinflammatory disorders. Curr Neuropharmacol 10:159–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Saliba SW, Marcotequi AR, Fortwängler E et al (2017) AM404, paracetamol metabolite, prevents prostaglandin synthesis in activated microglia by inhibiting COX activity. J Neuroinflammation 14:246

    PubMed  PubMed Central  Google Scholar 

  • Satsu H, Matsuda T, Toshimitsu T et al (2004) Regulation of interleukin-8 secretion in human intestinal epithelial Caco-2 cells by α-humulene. Biofactors 21:137–139

    CAS  PubMed  Google Scholar 

  • Schmitt S, Schaefer UF, Doebler L et al (2009) Cooperative interaction of monoterpenes and phenylpropanoids on the in vitro human skin permeation of complex composed essential oils. Planta Med 75:1381–1385

    CAS  PubMed  Google Scholar 

  • Scialdone MA (2017) U.S. Patent Application No. 15/613,633

    Google Scholar 

  • Sellers EM, Schoedel K, Bartlett C et al (2013) A multiple-dose, randomized, double-blind, placebo-controlled, parallel-group QT/QTc study to evaluate the electrophysiologic effects of THC/CBD spray. Clin Pharmacol Drug Dev 2(3):285–294

    CAS  PubMed  Google Scholar 

  • Silvestri C, Paris D, Martella A et al (2015) Two non-psychoactive cannabinoids reduce intracellular lipid levels and inhibit hepatosteatosis. J Hepatol 62(6):1382–1390

    CAS  PubMed  Google Scholar 

  • Simopoulos AP (2002) The importance of the ratio of omega-6/omega-3 essential fatty acids. Biomed Pharmacother 56(8):365–379

    CAS  PubMed  Google Scholar 

  • Smith TH, Blume LC, Straiker A et al (2015) Cannabinoid receptor–interacting protein 1a modulates CB1 receptor signaling and regulation. Mol Pharmacol 87(4):747–765

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith DR, Stanley C, Foss T et al (2017) Rare genetic variants in the endocannabinoid system genes CNR1 and DAGLA are associated with neurological phenotypes in humans. PLoS One 12:e0187926

    PubMed  PubMed Central  Google Scholar 

  • Solowij N, Walterfang M, Lubman DI et al (2013) Alteration to hippocampal shape in cannabis users with and without schizophrenia. Schizophrenia Res 143:179–184

    Google Scholar 

  • Stanley CP, Hind WH, O'sullivan SE (2013) Is the cardiovascular system a therapeutic target for cannabidiol? Br J Clin Pharmacol 75:313–322

    CAS  PubMed  Google Scholar 

  • Takeda S, Misawa K, Yamamoto I et al (2008) Cannabidiolic acid as a selective cyclooxygenase-2 inhibitory component in cannabis. Drug Metab Dispos 36:1917–1921

    CAS  PubMed  Google Scholar 

  • Tashkin DP, Shapiro BJ, Frank IM (1974) Acute effects of smoked marijuana and oral Δ9-tetrahydrocannabinol on specific airway conductance in asthmatic subjects. Am Rev Respir Dis 109:420–428

    CAS  PubMed  Google Scholar 

  • Tate G et al (1989) https://www.researchgate.net/profile/Guillermo_Tate/publication/20604782_Suppression_of_acute_and_chronic_inflammation_by_dietary_gamma_linolenic_acid/links/56e9a36a08aec8bc078113e9/Suppression-of-acute-and-chronic-inflammation-by-dietary-gamma-linolenic-acid.pdf

  • Tishcler J (2018) Microdosing for the medical market: Why who and how. Paper presented at the Institute for Cannabis Research, Colorado State University, Pueblo, April 27–28 2018

    Google Scholar 

  • Toyota M, Shimamura T, Ishii H et al (2002) New bibenzyl cannabinoid from the New Zealand liverwort Radula marginata. Chem Pharm Bull 50:1390–1392

    CAS  Google Scholar 

  • Trumbly B (1990) Double-blind clinical study of cannabidiol as a secondary anticonvulsant. In: Presented at Marijuana ‘90 international Conference on Cannabis and Cannabinoids, Kolympari (Crete)

    Google Scholar 

  • Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234

    CAS  PubMed  Google Scholar 

  • Ulbricht C (2011) Focus: Diabetes. J Diet Suppl 8:239–256

    CAS  PubMed  Google Scholar 

  • Upton R, Craker I, ElSohly M, et al. (2014) Cannabis inflorescence Cannabis Spp.: standards of identity, analysis, and quality control. American Herbal Pharmacopoeia, Scott’s Valley

    Google Scholar 

  • Vaccani A, Massi P, Colombo A et al (2005) Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism. Br J Pharmacol 144:1032–1036

    CAS  PubMed  PubMed Central  Google Scholar 

  • Van der Stelt M, Veldhuis W, Bär P et al (2001) Neuroprotection by Δ9-tetrahydrocannabinol, the main active compound in marijuana, against ouabain-induced in vivo excitotoxicity. J Neurosci 21:6475–6479

    PubMed  PubMed Central  Google Scholar 

  • Vemuri VK, Makriyannis A (2015) Medicinal chemistry of cannabinoids. Clin Pharmacol Ther 97:553–558

    CAS  PubMed  PubMed Central  Google Scholar 

  • Veress T, Szanto J, Leisztner L (1990) Determination of cannabinoid acids by high-performance liquid chromatography of their neutral derivatives formed by thermal decarboxylation: I. Study of the decarboxylation process in open reactors. J Chromatogr A 520:339–347

    CAS  Google Scholar 

  • Verhoeckx KC, Korthout HA, van Meeteren-Kreikamp AP et al (2006) Unheated Cannabis sativa extracts and its major compound THC-acid have potential immuno-modulating properties not mediated by CB1 and CB2 receptor coupled pathways. Int Immunopharmacol 6(4):656–665

    CAS  PubMed  Google Scholar 

  • Viñals X, Moreno E, Lanfumey L et al (2015) Cognitive impairment induced by delta9-tetrahydrocannabinol occurs through heteromers between cannabinoid CB1 and serotonin 5-HT2A receptors. PLoS Biol 13(7):e1002194

    PubMed  PubMed Central  Google Scholar 

  • Vogelmann AF, Turner JC, Mahlberg PG (1988) Cannabinoid composition in seedlings compared to adult plants of Cannabis sativa. J Nat Prod 51:1075–1079

    CAS  Google Scholar 

  • Wagner JA, Varga K, Kunos G (1998) Cardiovascular actions of cannabinoids and their generation during shock. J Mol Med 76(12):824–836

    CAS  PubMed  Google Scholar 

  • Wargent E, Zaibi MS, Silvestri C et al (2013) The cannabinoid Δ 9-tetrahydrocannabivarin (THCV) ameliorates insulin sensitivity in two mouse models of obesity. Nutr Diabetes 3:e68

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weiland BJ, Thayer RE, Depue BE et al (2015) Daily marijuana use is not associated with brain morphometric measures in adolescents or adults. J Neurosci 35:1505–1512

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whyte LS, Ryberg E, Sims NA et al (2009) The putative cannabinoid receptor GPR55 affects osteoclast function in vitro and bone mass in vivo. Proc Natl Acad Sci USA 106:16511–16516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woelkart K, Bauer R (2007) The role of alkamides as an active principle of Echinacea. Planta Med 73:615–623

    CAS  PubMed  Google Scholar 

  • Xi Z-X, Peng X-Q, Li X et al (2011) Brain cannabinoid CB2 receptors modulate cocaine's actions in mice. Nat Neurosci 14:1160–1166. http://www.nature.com/neuro/journal/v14/n9/abs/nn.2874.html#supplementary-information

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yücel M, Solowij N, Respondek C et al (2008) Regional brain abnormalities associated with long-term heavy cannabis use. Arch Gen Psychiatry 65:694–701

    PubMed  Google Scholar 

  • Yücel M, Lorenzetti V, Suo C et al (2016) Hippocampal harms, protection and recovery following regular cannabis use. Transl Psychiatry 6:e710

    PubMed  PubMed Central  Google Scholar 

  • Zuardi AW, Cosme RA, Graeff FG et al (1993) Effects of ipsapirone and cannabidiol on human experimental anxiety. J Psychopharmacol 7(1 Suppl):82–88

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors of this chapter would like to thank the many individuals and institutions who have had the courage and insight to work tirelessly in this field of cannabinoid therapeutics to contribute substantial understanding to the world scientific literature of the many benefits and few risks associated with the use of cannabis and its derivatives, in both human and veterinary species. In particular, the authors of this chapter want to express their gratitude to the veterinary clinical research teams from Colorado State (under the guidance of Stephanie McGrath) and Cornell Universities (under the guidance of Joe Wakslag) for having completed in the canine patient the first-ever safety studies, comparative pharmacokinetic studies, and efficacy studies to determine the ability of cannabinoids to reduce osteoarthritic discomfort and to help patients with refractory epilepsy. The authors would also like to extend their gratitude to Dr. Ethan Russo, Dr. Jahan Marcu, and Kevin McKernan for their thoughtful insights and review of the chapter. We look forward to the continued development of evidence supporting the clinical use of cannabis and its derivatives for many valuable applications in veterinary species. It is our fervent hope that the information presented in this chapter will help future research efforts bring more detailed data regarding the range of applications for cannabinoids in veterinary species.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joshua A. Hartsel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hartsel, J.A., Boyar, K., Pham, A., Silver, R.J., Makriyannis, A. (2019). Cannabis in Veterinary Medicine: Cannabinoid Therapies for Animals. In: Gupta, R., Srivastava, A., Lall, R. (eds) Nutraceuticals in Veterinary Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-04624-8_10

Download citation

Publish with us

Policies and ethics