Skip to main content

Infinite-Duration Poorman-Bidding Games

  • Conference paper
  • First Online:
Web and Internet Economics (WINE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11316))

Included in the following conference series:

Abstract

In two-player games on graphs, the players move a token through a graph to produce an infinite path, which determines the winner or payoff of the game. Such games are central in formal verification since they model the interaction between a non-terminating system and its environment. We study bidding games in which the players bid for the right to move the token. Two bidding rules have been defined. In Richman bidding, in each round, the players simultaneously submit bids, and the higher bidder moves the token and pays the other player. Poorman bidding is similar except that the winner of the bidding pays the “bank” rather than the other player. While poorman reachability games have been studied before, we present, for the first time, results on infinite-duration poorman games. A central quantity in these games is the ratio between the two players’ initial budgets. The questions we study concern a necessary and sufficient ratio with which a player can achieve a goal. For reachability objectives, such threshold ratios are known to exist for both bidding rules. We show that the properties of poorman reachability games extend to complex qualitative objectives such as parity, similarly to the Richman case. Our most interesting results concern quantitative poorman games, namely poorman mean-payoff games, where we construct optimal strategies depending on the initial ratio, by showing a connection with random-turn based games. The connection in itself is interesting, because it does not hold for reachability poorman games. We also solve the complexity problems that arise in poorman bidding games.

This research was supported in part by the Austrian Science Fund (FWF) under grants S11402-N23 (RiSE/SHiNE), Z211-N23 (Wittgenstein Award), and M 2369-N33 (Meitner fellowship).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    When the initial budget of Player \(1\) is exactly \({\texttt {Th}} (v)\), the winner of the game depends on how we resolve draws in biddings, and our results hold for any tie-breaking mechanism.

References

  1. Almagor, S., Avni, G., Kupferman, O.: Repairing multi-player games. In: Proceedings of the 26th CONCUR, pp. 325–339 (2015)

    Google Scholar 

  2. Alur, R., Henzinger, T.A., Kupferman, O.: Alternating-time temporal logic. J. ACM 49(5), 672–713 (2002)

    Article  MathSciNet  Google Scholar 

  3. Apt, K.R., Grädel, E.: Lectures in Game Theory for Computer Scientists. Cambridge University Press, Cambridge (2011)

    Book  Google Scholar 

  4. Avni, G., Guha, S., Kupferman, O.: An abstraction-refinement methodology for reasoning about network games. In: Proceedings of the 26th IJCAI, pp. 70–76 (2017)

    Google Scholar 

  5. Avni, G., Henzinger, T.A., Chonev, V.: Infinite-duration bidding games. In: Proceedings of the 28th CONCUR, vol. 85 of LIPIcs, pp. 21:1–21:18 (2017)

    Google Scholar 

  6. Avni, G., Henzinger, T.A., Ibsen-Jensen, R.: Infinite-duration poorman-bidding games. CoRR, abs/1804.04372, (2018). arXiv:1804.04372

  7. Avni, G., Henzinger, T.A., Kupferman, O.: Dynamic resource allocation games. In: Gairing, M., Savani, R. (eds.) SAGT 2016. LNCS, vol. 9928, pp. 153–166. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53354-3_13

    Chapter  Google Scholar 

  8. Avni, G., Kupferman, O., Tamir, T.: Network-formation games with regular objectives. Inf. Comput. 251, 165–178 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bhatt, J., Payne, S.: Bidding chess. Math. Intell. 31, 37–39 (2009)

    Article  Google Scholar 

  10. Brihaye, T., Bruyère, V., De Pril, J., Gimbert, H.: On subgame perfection in quantitative reachability games. Log. Methods Comput. Sci. 9(1) (2012). https://doi.org/10.2168/LMCS-9(1:7)2013

  11. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time. In: Proceedings of the 49th STOC (2017)

    Google Scholar 

  12. Canny, J.F.: Some algebraic and geometric computations in PSPACE. In: Proceedings of the 20th STOC, pp. 460–467 (1988)

    Google Scholar 

  13. Chatterjee, K.: Nash equilibrium for upward-closed objectives. In: Ésik, Z. (ed.) CSL 2006. LNCS, vol. 4207, pp. 271–286. Springer, Heidelberg (2006). https://doi.org/10.1007/11874683_18

    Chapter  Google Scholar 

  14. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria. Theor. Comput. Sci. 365(1–2), 67–82 (2006)

    Article  MathSciNet  Google Scholar 

  15. Chatterjee, K., Henzinger, T.A., Piterman, N.: Strategy logic. Inf. Comput. 208(6), 677–693 (2010)

    Article  MathSciNet  Google Scholar 

  16. Chatterjee, K., Majumdar, R., Jurdziński, M.: On nash equilibria in stochastic games. In: Marcinkowski, J., Tarlecki, A. (eds.) CSL 2004. LNCS, vol. 3210, pp. 26–40. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30124-0_6

    Chapter  Google Scholar 

  17. Condon, A.: On algorithms for simple stochastic games. In: Proceedings of the DIMACS, pp. 51–72 (1990)

    Google Scholar 

  18. Develin, M., Payne, S.: Discrete bidding games. Electron. J. Combin. 17(1), R85 (2010)

    MathSciNet  MATH  Google Scholar 

  19. Feldman, M., Snappir, Y., Tamir, T.: The efficiency of best-response dynamics. In: Bilò, V., Flammini, M. (eds.) SAGT 2017. LNCS, vol. 10504, pp. 186–198. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66700-3_15

    Chapter  Google Scholar 

  20. Fisman, D., Kupferman, O., Lustig, Y.: Rational synthesis. In: Proceedings of the 16th TACAS, pp. 190–204 (2010)

    Chapter  Google Scholar 

  21. Huang, Z., Devanur, N.R., Malec, D.: Sequential auctions of identical items with budget-constrained bidders. CoRR, abs/1209.1698 (2012)

    Google Scholar 

  22. Jurdzinski, M.: Deciding the winner in parity games is in up \(\cap \) co-up. Inf. Process. Lett. 68(3), 119–124 (1998)

    Article  MathSciNet  Google Scholar 

  23. Kalai, G., Meir, R., Tennenholtz, M.: Bidding games and efficient allocations. In: Proceedings of the 16th EC, pp. 113–130 (2015)

    Google Scholar 

  24. Kash, I.A., Friedman, E.J., Halpern, J.Y.: Optimizing scrip systems: crashes, altruists, hoarders, sybils and collusion. Distrib. Comput. 25(5), 335–357 (2012)

    Article  Google Scholar 

  25. Kupferman, O., Tamir, T.: Hierarchical network formation games. In: Legay, A., Margaria, T. (eds.) TACAS 2017. LNCS, vol. 10205, pp. 229–246. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54577-5_13

    Chapter  Google Scholar 

  26. Larsson, U., Wästlund, J.: Endgames in bidding chess. Games No Chance 5, 70 (2018)

    Google Scholar 

  27. Lazarus, A.J., Loeb, D.E., Propp, J.G., Stromquist, W.R., Ullman, D.H.: Combinatorial games under auction play. Games Econ. Behav. 27(2), 229–264 (1999)

    Article  MathSciNet  Google Scholar 

  28. Lazarus, A.J., Loeb, D.E., Propp, J.G., Ullman, D.: Richman games. Games No Chance 29, 439–449 (1996)

    MathSciNet  MATH  Google Scholar 

  29. Leme, R.P., Syrgkanis, V., Tardos, É.: Sequential auctions and externalities. In: Proceedings of the 23rd SODA, pp. 869–886 (2012)

    Chapter  Google Scholar 

  30. Mogavero, F., Murano, A., Perelli, G., Vardi, M.Y.: Reasoning about strategies: on the model-checking problem. ACM Trans. Comput. Log. 15(4), 34:1–34:47 (2014)

    Article  MathSciNet  Google Scholar 

  31. Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.: Algorithmic Game Theory. Cambridge University Press, Cambridge (2007)

    Book  Google Scholar 

  32. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity laplacian. J. Am. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  Google Scholar 

  33. Pnueli, A., Rosner, R.: On the synthesis of a reactive module. In: Proceedings of the 16th POPL, pp. 179–190 (1989)

    Google Scholar 

  34. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley, New York (2005)

    MATH  Google Scholar 

  35. Rabin, M.O.: Decidability of second order theories and automata on infinite trees. Trans. AMS 141, 1–35 (1969)

    MathSciNet  MATH  Google Scholar 

  36. Winter, E.: Negotiations in multi-issue committees. J. Public Econ. 65(3), 323–342 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guy Avni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Avni, G., Henzinger, T.A., Ibsen-Jensen, R. (2018). Infinite-Duration Poorman-Bidding Games. In: Christodoulou, G., Harks, T. (eds) Web and Internet Economics. WINE 2018. Lecture Notes in Computer Science(), vol 11316. Springer, Cham. https://doi.org/10.1007/978-3-030-04612-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04612-5_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04611-8

  • Online ISBN: 978-3-030-04612-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics