Learning Convex Partitions and Computing Game-Theoretic Equilibria from Best Response Queries

  • Paul W. GoldbergEmail author
  • Francisco J. Marmolejo-Cossío
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11316)


Suppose that an m-simplex is partitioned into n convex regions having disjoint interiors and distinct labels, and we may learn the label of any point by querying it. The learning objective is to know, for any point in the simplex, a label that occurs within some distance \(\varepsilon \) from that point. We present two algorithms for this task: Constant-Dimension Generalised Binary Search (CD-GBS), which for constant m uses \(poly(n, \log \left( \frac{1}{\varepsilon } \right) )\) queries, and Constant-Region Generalised Binary Search (CR-GBS), which uses CD-GBS as a subroutine and for constant n uses \(poly(m, \log \left( \frac{1}{\varepsilon } \right) )\) queries. We show via Kakutani’s fixed-point theorem that these algorithms provide bounds on the best-response query complexity of computing approximate well-supported equilibria of bimatrix games in which one of the players has a constant number of pure strategies.


Query protocol Equilibrium computation Revealed preferences 


  1. 1.
    Babichenko, Y.: Query complexity of approximate Nash equilibria. J. ACM 63(4), 36:1–36:24 (2016)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Babichenko, Y., Rubinstein, A.: Communication complexity of approximate Nash equilibria. In: Proceedings of the 49th STOC, pp. 878–889. ACM (2017)Google Scholar
  3. 3.
    Babichenko, Y., Barman, S., Peretz, R.: Empirical distribution of equilibrium play and its testing application. Math. Oper. Res. 42(1), 15–29 (2017)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Baldwin, E., Klemperer, P.: Understanding preferences: “demand types”, and the existence of equilibrium with indivisibilities. Technical report, LSE, October 2016Google Scholar
  5. 5.
    Brown, G.W.: Some notes on computation of game solutions. RAND corporation report, p. 78, April 1949Google Scholar
  6. 6.
    Bshouty, N.H., Goldberg, P.W., Goldman, S.A., Mathias, H.D.: Exact learning of discretized geometric concepts. SIAM J. Comput. 28(2), 674–699 (1998)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, X., Deng, X., Teng, S.-H.: Settling the complexity of computing two-player Nash equilibria. J. ACM 56(3), 14:1–14:57 (2009)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Daskalakis, C., Pan, Q.: A counter-example to Karlin’s strong conjecture for fictitious play. In: Proceedings of 55th FOCS, pp. 11–20 (2014)Google Scholar
  9. 9.
    Daskalakis, C., Goldberg, P.W., Papadimitriou, C.H.: The complexity of computing a Nash equilibrium. SIAM J. Comput. 39(1), 195–259 (2009)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Fearnley, J., Gairing, M., Goldberg, P.W., Savani, R.: Learning equilibria of games via payoff queries. J. Mach. Learn. Res. 16, 1305–1344 (2015)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Fudenberg, D., Levine, D.K.: The Theory of Learning in Games. MIT Press, Cambridge (1998)zbMATHGoogle Scholar
  12. 12.
    Goldberg, P.W., Kwek, S.: The precision of query points as a resource for learning convex polytopes with membership queries. In: Proceedings of the 13th COLT, pp. 225–235 (2000)Google Scholar
  13. 13.
    Goldberg, P.W., Roth, A.: Bounds for the query complexity of approximate equilibria. ACM Trans. Econ. Comput. 4(4), 24:1–24:25 (2016)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Goldberg, P.W., Savani, R., Sørensen, T.B., Ventre, C.: On the approximation performance of fictitious play in finite games. Int. J. Game Theory 42(4), 1059–1083 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Goldberg, P.W., Turchetta, S.: Query complexity of approximate equilibria in anonymous games. J. Comput. Syst. Sci. 90, 80–98 (2017)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hart, S., Mansour, Y.: How long to equilibrium? The communication complexity of uncoupled equilibrium procedures. Games Econ. Behav. 69(1), 107–126 (2010)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Hart, S., Nisan, N.: The query complexity of correlated equilibria. Games and Economic Behavior (2016). ISSN 0899–8256Google Scholar
  18. 18.
    Kakutani, S.: A generalization of Brouwer’s fixed point theorem. Duke Math. J. 8(3), 457–459 (1941)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Klemperer, P.: The product-mix auction: a new auction design for differentiated goods. J. Eur. Econ. Assoc. 8(2/3), 526–536 (2010)CrossRefGoogle Scholar
  20. 20.
    Lipton, R.J., Markakis, E., Mehta, A.: Playing large games using simple strategies. In: Proceedings of the 4th ACM-EC, EC 2003, pp. 36–41. ACM, New York (2003)Google Scholar
  21. 21.
    Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Robinson, J.: An iterative method of solving a game. Ann. Math. 54(2), 296–301 (1951)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Von Stengel, B.: Leadership with commitment to mixed strategies. CDAM Research report (2004)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Paul W. Goldberg
    • 1
    Email author
  • Francisco J. Marmolejo-Cossío
    • 1
  1. 1.University of OxfordOxfordUK

Personalised recommendations