Absorption Section Design Analysis

Part of the SpringerBriefs in Energy book series (BRIEFSENERGY)


In this chapter, the design of the absorption section of an industrial CO2 post-combustion capture system using MEA as solvent is analyzed. After the process description, the gas and liquid feed streams are characterized. A two-steps procedure is adopted for the design. Initially, the minimum number of units and the minimum solvent flow rate are determined, then the role of the temperature bulge in the absorber design is discussed. The influence of the molar L/V ratio, which affects the amount of solvent to be used in the process, is studied by means of the analysis of the liquid temperature profiles. Then, the effective solvent flow rate and column dimensions are evaluated. The proposed design procedure for the absorber is proved to avoid the presence of isothermal zones in the column, guarantying the use of the entire packing.


  1. 1.
    Tobiesen FA, Svendsen HF (2007) Experimental validation of a rigorous absorber model for CO2 postcombustion capture. AIChE J 53(4):846–865CrossRefGoogle Scholar
  2. 2.
    Lawal A, Wang M, Stephenson P et al (2009) Dynamic modelling of CO2 absorption for post-combustion capture in coal-fired power plant. Fuel 88(12):2455–2462CrossRefGoogle Scholar
  3. 3.
    Plaza JM, Wagener DV, Rochelle GT (2009) Modeling CO2 capture with aqueous monoethanolamine. Energy Procedia 1(1):1171–1178CrossRefGoogle Scholar
  4. 4.
    Zhang Y, Chen H, Chen C-C et al (2009) Rate-based process modeling study of CO2 capture with aqueous monoethanolamine solution. Ind Eng Chem Res 48(20):9233–9246CrossRefGoogle Scholar
  5. 5.
    Tobiesen FA, Juliussen O, Svendsen HF (2008) Experimental validation of a rigorous desorber model for CO2 post-combustion capture. Chem Eng Sci 63(10):2641–2656CrossRefGoogle Scholar
  6. 6.
    Tontiwachwuthikul P, Meisen A, Lim CJ (1992) CO2 absorption by NaOH, monoethanolamine and 2-amino-2-methyl-1-propanol solutions in a packed column. Chem Eng Sci 47(2):381–390CrossRefGoogle Scholar
  7. 7.
    Mac Dowell N, Samsatli NJ, Shah N (2013) Dynamic modelling and analysis of an amine-based post-combustion CO2 capture absorption column. Int J Greenhouse Gas Control 12:247–258CrossRefGoogle Scholar
  8. 8.
    Pintola T, Tontiwachwuthikul P, Meisen A (1993) Simulation of pilot-plant and industrial CO2-MEA absorbers. Gas Sep Purif 7(1):47–52CrossRefGoogle Scholar
  9. 9.
    Singh D, Croiset E, Douglas PL et al (2003) Techno-economic study of CO2 capture from an existing coal-fired power plant: MEA scrubbing vs O2/CO2 recycle combustion. Energy Convers Manage 44(19):3073–3091CrossRefGoogle Scholar
  10. 10.
    Alie C, Backham L, Croiset E et al (2005) Simulation of CO2 capture using MEA scrubbing: a flowsheet decomposition method. Energy Convers Manage 46(3):475–487CrossRefGoogle Scholar
  11. 11.
    Abu-Zahra MRM, Schneiders LHJ, Niederer JPM et al (2007) CO2 capture from power plants: Part I. A parametric study of the technical performance based on monoethanolamine. Int J Greenhouse Gas. Control 1(1):37–46Google Scholar
  12. 12.
    Cau G, Tola V, Deiana P (2014) Comparative performance assessment of USC and IGCC power plants integrated with CO2 capture systems. Fuel 116:820–833CrossRefGoogle Scholar
  13. 13.
    Lawal A, Wang M, Stephenson P et al (2012) Demonstrating full-scale post-combustions CO2 for coal-fired power plants through dynamic modelling and simulation. Fuel 101:115–128CrossRefGoogle Scholar
  14. 14.
    Nittaya T, Douglas PL, Croiset E et al (2013) Dynamic modeling and evaluation of an industrial-scale CO2 capture plant using monoethanolamine absorption processes. Ind Eng Chem Res 53(28):11411–11426CrossRefGoogle Scholar
  15. 15.
    Madeddu C, Errico M, Baratti R (2018) Process analysis for the carbon dioxide chemical absorption-regeneration system. Appl Energy 215:532–542CrossRefGoogle Scholar
  16. 16.
    Seader JD, Henley EJ, Koper DK (2010) Separation process principles: chemical and biochemical operations. Wiley, New YorkGoogle Scholar
  17. 17.
    Sinnott RK (2005) Coulson & Richardson’s chemical engineering volume 6—chemical engineering design. Elsevier Butterworth-HeinemannGoogle Scholar
  18. 18.
    Wang M, Lawal P, Stephenson P et al (2011) Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des 89(9):1609–1624CrossRefGoogle Scholar
  19. 19.
    Tan LS, Shariff M, Lau KK et al (2012) Factors affecting CO2 absorption efficiency in packed column: a review. J Ind Eng Chem 18(6):1874–1883CrossRefGoogle Scholar
  20. 20.
    Bui M, Gunawan I, Verheyen V et al (2014) Dynamic modelling and optimization of flexible operation in post-combustion CO2 capture plants—a review. Comput Chem Eng 61:245–265CrossRefGoogle Scholar
  21. 21.
    de Miguel Mercader F, Magneschi G, Fernander ES et al (2012) Integration between a demo size post-combustion CO2 capture and full size plant. An integral approach on energy penalty for different process options. Int J Greenhouse Gas Control 11S:S102–S113Google Scholar
  22. 22.
    Lin Y-J, Wong DS-H, Jang S-S (2012) Control strategies for flexible operation of power plant with CO2 capture plant. AIChE J 58(9):2697–2704CrossRefGoogle Scholar
  23. 23.
    Kvamsdal HM, Rochelle GT (2008) Effect of the temperature bulge in CO2 absorption from flue gas by aqueous monoethanolamine. Ind Eng Chem Res 47(3):867–875CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria Meccanica, Chimica e dei Materiali, Università di CagliariCagliariItaly
  2. 2.Department of Chemical Engineering, Biotechnology and Environmental Technology, University of Southern DenmarkOdense MDenmark
  3. 3.Dipartimento di Ingegneria Meccanica, Chimica e dei MaterialiUniversità di CagliariCagliariItaly

Personalised recommendations