Energy-Saving Synthesis of Mg2SiO4:RE3+ Nanophosphors for Solid-State Lighting Applications

  • Ramachandra Naik
  • Ramyakrishna Pothu
  • Prashantha S. CEmail author
  • Nagabhushana HEmail author
  • Aditya Saran
  • Harisekhar Mitta
  • Rajender BoddulaEmail author
Part of the Environmental Chemistry for a Sustainable World book series (ECSW, volume 24)


Magnesium silicate (Mg2SiO4) doped with rare earth (RE3+) ions can be prepared using different methods. The combustion method is the most widely used technique because it saves time and energy compared with conventional solid-state reactions. Preparation of nanophosphors via the combustion method can be carried out using different fuels such as urea, oxalyldihydrazide (ODH), diformylhydrazine, and plant extracts. In this study, Mg2SiO4:RE3+ nanophosphors are prepared using the combustion method with ODH fuel, which is an energy-saving synthesis because the products are formed at a low temperature (350 °C). Photoluminescence analysis is carried out with the prepared nanophosphors for solid-state lighting applications.


Combustion Nanophosphor Solid-state lighting application Photoluminescence 


  1. Balakrishnaiah R, Yi SS, Jang K et al (2011) Enhanced luminescence properties of YBO3:Eu3+ phosphors by Li-doping. Mater Res Bull 46:621–626. CrossRefGoogle Scholar
  2. Bos AJJ (2001) High sensitivity thermoluminescence dosimetry. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater Atoms 184:3–28. CrossRefGoogle Scholar
  3. Campagna S, Puntoriero F, Nastasi F et al (2007) Photochemistry and photophysics of coordination compounds: ruthenium. In: Balzani V, Campagna S (eds) Photochemistry and photophysics of coordination compounds I. Springer, Berlin/Heidelberg, pp 117–214CrossRefGoogle Scholar
  4. Cao G (2004) Nanostructures and nanomaterials, synthesis, properties and applications. Imperial College Press, LondonCrossRefGoogle Scholar
  5. Champod C, Lennard C, Margot P, Stoilovic M (2004) Fingerprints and other ridge skin impressions. CRC Press, Boca RatonCrossRefGoogle Scholar
  6. Chen Y, Yang HK, Park SW et al (2012) Characterization and photoluminescent enhancement of Li+ corporation effect on CaWO4:Eu3+ phosphor. J Alloys Compd 511:123–128. CrossRefGoogle Scholar
  7. Cho S, Lee H, Moon C et al (2010) Synthesis and characterization of Eu3+ doped Lu2O3 nanophosphor using a solution-combustion method. J Sol-Gel Sci Technol 53:171–175. CrossRefGoogle Scholar
  8. Cushing BL, Kolesnichenko VL, O’Connor CJ (2004) Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev 104:3893–3946. CrossRefGoogle Scholar
  9. Damilano B, Grandjean N, Pernot C, Massies J (2001) Monolithic white light emitting diodes based on InGaN/GaN multiple-quantum wells. Jpn J Appl Phys 40:L918CrossRefGoogle Scholar
  10. Devakumar B, Halappa P, Shivakumara C (2017) Dy3+/Eu3+ co-doped CsGd(MoO4)2 phosphor with tunable photoluminescence properties for near-UV WLEDs applications. Dyes Pigments 137:244–255. CrossRefGoogle Scholar
  11. Dorman JA, Choi JH, Kuzmanich G, Chang JP (2012) Elucidating the effects of a rare-earth oxide Shell on the luminescence dynamics of Er3+:Y2O3 nanoparticles. J Phys Chem C 116:10333–10340. CrossRefGoogle Scholar
  12. Fathi MH, Kharaziha M (2008) Mechanically activated crystallization of phase pure nanocrystalline forsterite powders. Mater Lett 62:4306–4309. CrossRefGoogle Scholar
  13. Fathi MH, Kharaziha M (2009) The effect of fluorine ion on fabrication of nanostructure forsterite during mechanochemical synthesis. J Alloys Compd 472:540–545. CrossRefGoogle Scholar
  14. Fendler JH, Meldrum FC (1995) The colloid chemical approach to nanostructured materials. Adv Mater 7:607–632. CrossRefGoogle Scholar
  15. Fernández-García M, Martínez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104:4063–4104. CrossRefGoogle Scholar
  16. Fu LB, Liang LY, Ren YZ, Shan SC (2004) A novel white light emitting long-lasting phosphor. Chin Chem Letters 15:335–338Google Scholar
  17. Gavrilović TV, Jovanović DJ, Lojpur VM et al (2014) Enhancement of luminescence emission from GdVO4:Er3+/Yb3+ phosphor by Li+ co-doping. J Solid State Chem 217:92–98. CrossRefGoogle Scholar
  18. Gavrilović TV, Jovanović DJ, Trandafilović LV, Dramićanin MD (2015) Effects of Ho3+ and Yb3+ doping concentrations and Li+ co-doping on the luminescence of GdVO4 powders. Opt Mater (Amst) 45:76–81. CrossRefGoogle Scholar
  19. Hagenmuller P (1992) Preparative methods in solid state chemistry. Academic Press, New YorkGoogle Scholar
  20. Han JY, Im WB, Kim D et al (2012) New full-color-emitting phosphor{,} Eu2+-doped Na2-xAl2-xSixO4 (0 [less-than-or-equal] x [less-than-or-equal] 1){,} obtained using phase transitions for solid-state white lighting. J Mater Chem 22:5374–5381. CrossRefGoogle Scholar
  21. Hassanzadeh-Tabrizi SA, Taheri-Nassaj E (2013) Polyacrylamide gel synthesis and sintering of Mg2SiO4:Eu3+nanopowder. Ceram Int 39:6313–6317. CrossRefGoogle Scholar
  22. Hehlen MP, Brik MG, Krämer KW (2013) 50th anniversary of the Judd–Ofelt theory: an experimentalist’s view of the formalism and its application. J Lumin 136:221–239. CrossRefGoogle Scholar
  23. Huang H, Yan B (2006) Sol-gel synthesis of YxGd2−xSiO5:Eu3+ phosphors derived from the in situ assembly of multicomponent hybrid precursors. Opti Mater 28:556–559. CrossRefGoogle Scholar
  24. Kaiser A, Lobert M, Telle R (2008) Thermal stability of zircon (ZrSiO4). J Eur Ceram Soc 28:2199–2211. CrossRefGoogle Scholar
  25. Kharaziha M, Fathi MH (2009) Synthesis and characterization of bioactive forsterite nanopowder. Ceram Int 35:2449–2454. CrossRefGoogle Scholar
  26. Kirkwood S (2005) Park mysteries: deep blue, national parks magazine (National Parks Conservation Association), pp 20–21. Springer ISSN:0276-8186Google Scholar
  27. Kosanović C, Stubičar N, Tomašić N et al (2005) Synthesis of a forsterite powder by combined ball milling and thermal treatment. J Alloys Compd 389:306–309. CrossRefGoogle Scholar
  28. Krishna RH, Nagabhushana BM, Nagabhushana H et al (2013) Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3:Eu3+ nanophosphor. J Phys Chem C 117:1915–1924. CrossRefGoogle Scholar
  29. Krishna RH, Nagabhushana BM, Nagabhushana H et al (2014) Combustion synthesis approach for spectral tuning of Eu doped CaAl2O4 phosphors. J Alloys Compd 589:596–603. CrossRefGoogle Scholar
  30. Kuang J, Liu Y, Lei B (2006) Effect of RE3+ as a co-dopant in long-lasting phosphorescence CdSiO3:Mn2+ (RE=Y, La, Gd, Lu). J Lumin 118:33–38. CrossRefGoogle Scholar
  31. Lakowicz JR (2006) Principles of fluorescence spectroscopy. Springer, SingaporeCrossRefGoogle Scholar
  32. Lakshmi BB, Patrissi CJ, Martin CR (1997) Sol−gel template synthesis of semiconductor oxide micro- and nanostructures. Chem Mater 9:2544–2550. CrossRefGoogle Scholar
  33. Lakshminarasappa BN, Prashantha SC, Singh F (2011) Ionoluminescence studies of combustion synthesized Dy3+doped nano crystalline forsterite. Curr Appl Phys 11:1274–1277. CrossRefGoogle Scholar
  34. Lin L, Min Y, Chaoshu S et al (2006) Synthesis and luminescence properties of red phosphors: Mn2+ doped MgSiO3 and Mg2SiO4 prepared by sol-gel method. J Rare Earths 24:104–107. CrossRefGoogle Scholar
  35. Lin L, Yin M, Shi C, Zhang W (2008) Luminescence properties of a new red long-lasting phosphor: Mg2SiO4:Dy3+, Mn2+. J Alloys Compd 455:327–330. CrossRefGoogle Scholar
  36. Manjunatha C, Nagabhushana BM, Sunitha DV, Nagabhushana H, Sharma SC, Venkatesh GB, Chakradhar RPS (2013) Effect of NaF flux on microstructure and thermoluminescence properties of Sm3+ doped CdSiO3nanophosphor. J Lumin 134:432–440. CrossRefGoogle Scholar
  37. Martin MHE, Ober CK, Hubbard CR et al (1992) Poly(methacrylate) precursors to forsterite. J Am Ceram Soc 75:1831–1838. CrossRefGoogle Scholar
  38. Mostafavi K, Ghahari M, Baghshahi S, Arabi AM (2013) Synthesis of Mg2SiO4:Eu3+ by combustion method and investigating its luminescence properties. J Alloys Compd 555:62–67. CrossRefGoogle Scholar
  39. Mu Z, Hu Y, Chen L, Wang X (2011) Enhanced red emission in ZnB2O4:Eu3+ by charge compensation. Opt Mater (Amst) 34:89–94. CrossRefGoogle Scholar
  40. Muthu S, Gaines J (2003) Proceedings of the industry applications conference, pp 515–522Google Scholar
  41. Muthu S, Schuurmans FJ, Pashley MD (2002) Proceedings of the industry applications conference, pp 327–333Google Scholar
  42. Naik R, Prashantha SC, Nagabhushana H et al (2014a) Low temperature synthesis and photoluminescence properties of red emitting Mg2SiO4:Eu3+ nanophosphor for near UV light emitting diodes. Sensors Actuators B Chem 195:140–149. CrossRefGoogle Scholar
  43. Naik R, Prashantha SC, Nagabhushana H et al (2014b) Mg2SiO4:Tb3+ nanophosphor: auto ignition route and near UV excited photoluminescence properties for WLEDs. J Alloys Compd 617:69–75. CrossRefGoogle Scholar
  44. Naik R, Prashantha SC, Nagabhushana H et al (2015) A single phase, red emissive Mg2SiO4:Sm3+ nanophosphor prepared via rapid propellant combustion route. Spectrochim Acta Part A Mol Biomol Spectrosc 140:516–523. CrossRefGoogle Scholar
  45. Naik R, Prashantha SC, Nagabhushana H et al (2016) Tunable white light emissive Mg2SiO4:Dy3+ nanophosphor: its photoluminescence, Judd–Ofelt and photocatalytic studies. Dyes Pigments 127:25–36. CrossRefGoogle Scholar
  46. Naik R, Prashantha SC, Nagabhushana H (2017) Effect of Li+ codoping on structural and luminescent properties of Mg2SiO4:RE3+ (RE = Eu, Tb) nanophosphors for displays and eccrine latent fingerprint detection. Opt Mater (Amst) 72:295–304. CrossRefGoogle Scholar
  47. Nakamura S, Fasol G (1997) The blue laser diode. Springer, BerlinCrossRefGoogle Scholar
  48. Noto LL (2011) Red emission of praseodymium ions, M.Sc. Thesis, University of South Africa, South AfricaGoogle Scholar
  49. Park K, Kim H, Hakeem DA (2017) Effect of host composition and Eu3+ concentration on the photoluminescence of aluminosilicate (Ca,Sr)2Al2SiO7:Eu3+ phosphors. Dyes Pigments 136:70–77. CrossRefGoogle Scholar
  50. Prashantha SC, Lakshminarasappa BN, Nagabhushana BM (2011) Photoluminescence and thermoluminescence studies of Mg2SiO4:Eu3+ nano phosphor. J Alloys Compd 509:10185–10189. CrossRefGoogle Scholar
  51. Rao CNR (1994) Chemical approaches to the synthesis of inorganic materials. Wiley Eastern Ltd/New Age International Ltd, New DelhiGoogle Scholar
  52. Saberi A, Alinejad B, Negahdari Z et al (2007) A novel method to low temperature synthesis of nanocrystalline forsterite. Mater Res Bull 42:666–673. CrossRefGoogle Scholar
  53. Saberi A, Negahdari Z, Alinejad B, Golestani-Fard F (2009) Synthesis and characterization of nanocrystalline forsterite through citrate–nitrate route. Ceram Int 35:1705–1708. CrossRefGoogle Scholar
  54. Sanosh KP, Balakrishnan A, Francis L, Kim TN (2010) Sol–gel synthesis of forsterite nanopowders with narrow particle size distribution. J Alloys Compd 495:113–115. CrossRefGoogle Scholar
  55. Sasaki KY, Talbot JB (1999) Deposition of powder phosphors for information displays. Adv Mater 11:91–105.<91::AID-ADMA91>3.0.CO;2-K CrossRefGoogle Scholar
  56. Sato Y, Takahashi N, Sato S (1996) Full-color fluorescent display devices using a near-UV light-emitting diode. Jpn J Appl Phys 35:L838CrossRefGoogle Scholar
  57. Seah LK, Dinish US, Phang WF et al (2005) Fluorescence optimisation and lifetime studies of fingerprints treated with magnetic powders. Forensic Sci Int 152:249–257. CrossRefGoogle Scholar
  58. Su Y, Li L, Li G (2008) Synthesis and optimum luminescence of CaWO4-based red phosphors with codoping of Eu3+ and Na+. Chem Mater 20:6060–6067. CrossRefGoogle Scholar
  59. Sun Y, Xia Y (2002) Shape-controlled synthesis of gold and silver nanoparticles. Science 298(80):2176–2179. CrossRefGoogle Scholar
  60. Sun H-T, Fujii M, Nitta N et al (2009) Molten-salt synthesis and characterization of nickel-doped Forsterite nanocrystals. J Am Ceram Soc 92:962–966. CrossRefGoogle Scholar
  61. Sunitha DV, Manjunatha C, Shilpa CJ, Nagabhushana H, Sharma SC, Nagabhushana BM, Dhananjaya N, Shivakumara C, Chakradhar RPS (2012a) CdSiO3:Pr3+ nanophosphor: synthesis, characterization and thermoluminescence studies. Spectrochim Acta Part A Mol Biomol Spectrosc 99:279–287. CrossRefGoogle Scholar
  62. Sunitha DV, Nagabhushana H, Singh F et al (2012b) Thermo, iono and photoluminescence properties of 100MeV Si7+ ions bombarded CaSiO3:Eu3+ nanophosphor. J Lumin 132:2065–2071. CrossRefGoogle Scholar
  63. Sunitha DV, Nagabhushana H, Sharma SC, Singh F, Nagabhushana BM, Dhananjaya N, Shivakumara C, Chakradhar RPS (2013) Structural, iono and thermoluminescence properties of heavy ion (100 MeV Si7+) bombarded Zn2SiO4:Sm3+nanophosphor. J Lumin 143:409–417. CrossRefGoogle Scholar
  64. Tani T, Saeki S, Suzuki T, Ohishi Y (2007) Chromium-doped forsterite nanoparticle synthesis by flame spray pyrolysis. J Am Ceram Soc 90:805–808. CrossRefGoogle Scholar
  65. Tavangarian F, Emadi R (2010) Synthesis of nanocrystalline forsterite (Mg2SiO4) powder by combined mechanical activation and thermal treatment. Mater Res Bull 45:388–391. CrossRefGoogle Scholar
  66. Venkatachari KR, Huang D, Ostrander SP et al (1995) A combustion synthesis process for synthesizing nanocrystalline zirconia powders. J Mater Res 10:748–755. CrossRefGoogle Scholar
  67. Wang F, Chatterjee DK, Li Z et al (2006) Synthesis of polyethylenimine/NaYF4 nanoparticles with upconversion fluorescence. Nanotechnology 17:5786CrossRefGoogle Scholar
  68. Wang J, Hoagland RG, Hirth JP et al (2009) Nucleation of a (1¯012) twin in hexagonal close-packed crystals. Scr Mater 61:903–906. CrossRefGoogle Scholar
  69. Wong H-T, Tsang M-K, Chan C-F et al (2013) In vitro cell imaging using multifunctional small sized KGdF4:Yb3+{,}Er3+ upconverting nanoparticles synthesized by a one-pot solvothermal process. Nanoscale 5:3465–3473. CrossRefGoogle Scholar
  70. Yang HK, Choi H, Moon BK et al (2010) Improved luminescent behavior of YVO4:Eu3+ ceramic phosphors by Li contents. Solid State Sci 12:1445–1448. CrossRefGoogle Scholar
  71. Yang RY, Peng YM, Lai HL, Chu CJ, Chiou B, Su YK (2013) Effect of the different concentrations of Eu3+ ions on the microstructure and photoluminescent properties of Zn2SiO4:xEu3+ phosphors and synthesized with TEOS solution as silicate source. Opt Mater 35:1719–1723. CrossRefGoogle Scholar
  72. Yokota K, Zhang S-X, Kimura K, Sakamoto A (2001) Eu2+-activated barium magnesium aluminate phosphor for plasma displays – phase relation and mechanism of thermal degradation. J Lumin 92:223–227. CrossRefGoogle Scholar
  73. Zhang Y, Mei L, Liu H et al (2017) Dysprosium doped novel apatite-type white-emitting phosphor Ca9La(PO4)5(GeO4)F2 with satisfactory thermal properties for n-UV w-LEDs. Dyes Pigments 139:180–186. CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of PhysicsNew Horizon College of EngineeringBengaluruIndia
  2. 2.College of Chemistry and Chemical EngineeringHunan UniversityChangshaChina
  3. 3.Research Center, Department of ScienceEast West Institute of TechnologyBengaluruIndia
  4. 4.Prof. CNR Rao Center for Advanced MaterialsTumkur UniversityTumkurIndia
  5. 5.Department of MicrobiologyMarwadi UniversityRajkotIndia
  6. 6.State Key Laboratory of CatalysisDalian Institute of Chemical Physics, Chinese Academy of SciencesDalianChina
  7. 7.Catalysis DivisionCSIR-Indian Institute of Chemical TechnologyHyderabadIndia
  8. 8.CAS Key Laboratory of Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijingChina

Personalised recommendations