ROBMMOR: An Experimental Robotic Manipulator for Motor Rehabilitation of Knee

  • Gabriel A. NavarreteEmail author
  • Yolanda R. BacaEmail author
  • Daniel VillanuevaEmail author
  • Daniel MartínezEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11289)


Nowadays, the role of robotics in patients’ rehabilitation it is an area of interest for science and technological development. Besides, the motor rehabilitation has had great success in subjects with disability problems which require an intensive and specific therapeutic approach for each task through robots. Budgetary constraints limit to hand-to-hand therapy approach, so machines can offer a solution to further promote patient recovery and to better understand the rehabilitation process. This article presents a ROBMMOR: an experimental robotic manipulator of knee rehabilitation. The robot is capable of performing passive exercises in patients with motor movement problems in the knee. The robot’s system helps the patient in the process in a personalized way through the positions of speed and strength required. Finally, ROBMMOR obtains data and generates an evaluation of the progress of the patient’s rehabilitation that helps the therapist for future analysis.


Robotic Knee Control system Motor rehabilitation 



The authors are very grateful to the National Council of Science and Technology, Cátedras Conacyt Program, with Ubaldo Ruiz, PhD from Department of Computer Science, CICESE-México. Additionally, this paper was sponsored by of the FORDECYT- CONACYT with the project 296737 “Consortium in Artificial Intelligence”.


  1. 1.
    Kwakkel, G., Wagenaar, R., Twisk, J., Lankhorst, G.: Intensity of leg and arm training after primary middle-cerebral-artery stroke: a randomised trial. Lancet 354, 191–196 (1999)CrossRefGoogle Scholar
  2. 2.
    Hesse, S., Schmidt, H., Werner, C.: Upper and lower extremity robotic devices for rehabilitation and for studying motor control. Curr. Opin. Neurol. 16, 705–710 (2003). journals.lww.comCrossRefGoogle Scholar
  3. 3.
    Lünenburger, L., Colombo, G.: Biofeedback for robotic gait rehabilitation. J. Neuroeng. Rehab. 4, 1 (2007).
  4. 4.
    Ayuso-Mateos, J., Nieto-Moreno, M., Sánchez-Moreno, J.: Clasificación Internacional del Funcionamiento, la Discapacidad y la Salud (CIF): aplicabilidad y utilidad en la práctica clínica. Med. Clin. (Barc) 126, 461–466 (2006). sid.usal.esCrossRefGoogle Scholar
  5. 5.
    García, C., Sánchez, A.: Clasificaciones de la OMS sobre discapacidad. Boletín del RPD 50, 15–30 (2001).
  6. 6.
    Akdoğan, E., Taçgın, E., Adli, M.: Knee rehabilitation using an intelligent robotic system. J. Intell. Manuf. 20, 195 (2009)CrossRefGoogle Scholar
  7. 7.
    Roy, A., Krebs, H., Williams, D., Bever, C.: Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Trans. Robot. 25, 569–582 (2009). Scholar
  8. 8.
    García, D., Gabriel, P.: Diseño de un rehabilitador de rodilla (2012)Google Scholar
  9. 9.
    Ocaña, S., Edmundo, W., Amaguaña, S., Adolfo, M.: Diseño y construcción de un banco de cuádriceps automático, para rehabilitación física de rodilla en pacientes del Patronato de Amparo Social Niño de Isinchi–Pujilí (2017)Google Scholar
  10. 10.
    Camacho, J., Chamorro, C.: Implementation of a service-oriented architecture for applications in physical rehabilitation. Facultad de Ingeniería 26, 113–121 (2017).
  11. 11.
    Ceballos, E., Díaz-Rodriguez, M., Paredes, P., Vargas, P.: Development of a passive Rehabilitation Robot for the wrist joint through the implementation of an Arduino UNO microcontroller, June 2017Google Scholar
  12. 12.
    Hondori, H.M., Khademi, M., Dodakian, L., Cramer, S.C., Lopes, C.V.: A spatial augmented reality rehab system for post-stroke hand rehabilitation. Stud. Health Technol. Inf. 184, 279–285 (2013)Google Scholar
  13. 13.
    Cidota, M., Lukosch, S., Bank, P.: Towards engaging upper extremity motor dysfunction assessment using augmented reality games. In: 2017 IEEE International Symposium on Mixed and Augmented Reality, ISMAR-Adjunct (2017).
  14. 14.
    Alamri, A., Cha, J., El Saddik, A.: AR-REHAB: an augmented reality framework for poststroke-patient rehabilitation. IEEE Trans. Instrum. Meas. 59, 2554–2563 (2010). Scholar
  15. 15.
    Malosio, M., Pedrocchi, N., Molinari Tosatti, L.: Robot-assisted upper-limb rehabilitation platform. In: Proceedings of the 5th ACM/IEEE International Conference on Human-Robot Interaction (2010).
  16. 16.
    Soltani-Zarrin, R., Zeiaee, A., Langari, R.: Challenges and opportunities in exoskeleton-based rehabilitation. arXiv preprint arXiv:1711.09523 (2017).
  17. 17.
    Mercado, P., Zarco, R., Arias, D.: Relation between propioception and muscle strength of knee in asymptomatic subjects. Revista mexicana de medicina física y rehabilitación 15, 17–23 (2003).

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Universidad Tecnológica del Centro de VeracruzCuitláhuacMexico
  2. 2.INFOTEC: Centro de Investigación e Innovación en Tecnologías de la Información y ComunicaciónAguascalientesMexico
  3. 3.CONACyT Consejo Nacional de Ciencia y Tecnología, Dirección de CátedrasMexico CityMexico

Personalised recommendations