• Larry A. ViehlandEmail author
Part of the Springer Series on Atomic, Optical, and Plasma Physics book series (SSAOPP, volume 105)


This chapter introduces the reader to the history and basic concepts of swarm research, along with the physical relationships and mathematical equations that will be used in the chapters to follow.


  1. W.P. Allis, D.J. Rose, Phys. Rev. 93, 84 (1954)ADSGoogle Scholar
  2. W.S. Barnes, D.W. Martin, E.W. McDaniel, Phys. Rev. Lett. 6, 110 (1961)ADSGoogle Scholar
  3. E.C. Beaty, P.L. Patterson, Phys. Rev. 170, 116 (1968)ADSGoogle Scholar
  4. M.A. Biondi, Phys. Rev. 93, 1136 (1954)ADSGoogle Scholar
  5. A. Blanc, J. Phys. (Paris) 7, 825 (1908)Google Scholar
  6. N.E. Bradbury, R.A. Nielsen, Phys. Rev. 49, 388 (1936)ADSGoogle Scholar
  7. G. Cavalleri, S.L. Paveri-Fontona, Phys. Rev. A 6, 327 (1972)ADSGoogle Scholar
  8. M.J. Druyvesteyn, Physica 10, 61 (1930)Google Scholar
  9. M.J. Druyvesteyn, E.M. Penning, Rev. Mod. Phys. 12, 87 (1940)ADSGoogle Scholar
  10. D. Edelson, K.B. McAfee, Rev. Sci. Instrum. 35, 187 (1964)ADSGoogle Scholar
  11. G.A. Eiceman, Z. Karpas, H.H. Hill Jr., Ion Mobility Spectrometry, 3rd edn. (CRC Press, Boca Raton, 2014)Google Scholar
  12. H.W. Ellis, R.Y. Pai, E.W. McDaniel, E.A. Mason, L.A. Viehland, At. Data Nucl. Data Tables 17, 177 (1976)ADSGoogle Scholar
  13. H.W. Ellis, E.W. McDaniel, D.L. Albritton, L.A. Viehland, S.L. Lin, E.A. Mason, At. Data Nucl. Data Tables 22, 17 (1978)Google Scholar
  14. H.W. Ellis, M.G. Thackston, E.W. McDaniel, E.A. Mason, At. Data Nucl. Data Tables 31, 113 (1984)ADSGoogle Scholar
  15. J.P. England, M.T. Elford, Aust. J. Phys. 40, 355 (1987)ADSGoogle Scholar
  16. W.A. Everhart, W.A. Hare, E. Mack Jr., J. Am. Chem. Soc. 54, 888 (1932)Google Scholar
  17. J.L.A. Francey, J. Phys. B 2, 680 (1969)ADSGoogle Scholar
  18. A.M. Gardner, C.D. Withers, J.B. Graneek, T.G. Wright, L.A. Viehland, W.H. Breckenridge, J. Phys. Chem. A 114, 7631 (2010)Google Scholar
  19. I.R. Gatland, Case Stud. Atom. Phys. 4, 369 (1974)Google Scholar
  20. S. Geltman, Phys. Rev. 90, 808 (1953)ADSGoogle Scholar
  21. O. Glasser, William Conrad Roentgen and the Early History of the Roentgen Rays (Charles C. Thomas, Springfield, Illinois, 1934)Google Scholar
  22. H.R. Hassé, Phil. Mag. 1, 139 (1926)Google Scholar
  23. H.R. Hassé, W.R. Cook, Phil. Mag. 12, 554 (1931)Google Scholar
  24. J.M. Heimerl, R. Johnsen, M.A. Biondi, J. Chem. Phys. 51, 5041 (1969)ADSGoogle Scholar
  25. A.V. Hershey, Phys. Rev. 56, 916 (1939)ADSGoogle Scholar
  26. J.O. Hirschfelder, C.F. Curtiss, R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, Corrected with Notes, 1964)zbMATHGoogle Scholar
  27. F. Howorka, F.C. Fehsenfeld, D.L. Albritton, J. Phys. B 12, 4189 (1979)ADSGoogle Scholar
  28. G.S. Hurst, J.E. Parks, J. Chem. Phys. 45, 242 (1966)Google Scholar
  29. L.G.H. Huxley, Aust. J. Phys. 25, 43 (1972)ADSGoogle Scholar
  30. L.G.H. Huxley, R.W. Crompton, The Diffusion and Drift of Electrons in Gases (Wiley, New York, 1974)Google Scholar
  31. L.G.H. Huxley, R.W. Crompton, M.T. Elford, Br. J. Appl. Phys. 17, 1237 (1966)ADSGoogle Scholar
  32. K. Kondo, H. Tagashira, J. Phys. D: App. Phys. 26, 1948 (1993)ADSGoogle Scholar
  33. A.D. Koutselos, J. Chem. Phys. 102, 7216 (1995)ADSGoogle Scholar
  34. K. Kumar, H.R. Skullerud, R.E. Robson, Aust. J. Phys. 33, 343 (1980)ADSGoogle Scholar
  35. P.-H. Larsen, H.R. Skullerud, T.H. Lovaas, Th Stefansson, J. Phys. B 21, 2519 (1988)ADSGoogle Scholar
  36. S.L. Lin, J.N. Bardsley, J. Phys. B 8, L461 (1975)ADSGoogle Scholar
  37. S.L. Lin, J.N. Bardsley, J. Chem. Phys. 66, 435 (1977)ADSGoogle Scholar
  38. S.L. Lin, J.N. Bardsley, Comp. Phys. Comm. 15, 161 (1978)ADSGoogle Scholar
  39. S.L. Lin, I.R. Gatland, E.A. Mason, J. Phys. B. 12, 4179 (1979a)ADSGoogle Scholar
  40. S.L. Lin, R.E. Robson, E.A. Mason, J. Chem. Phys. 71, 3483 (1979b)ADSGoogle Scholar
  41. S.L. Lin, L.A. Viehland, E.A. Mason, Chem. Phys. 37, 411 (1979c)Google Scholar
  42. L.B. Loeb, Basic Processes of Gaseous Electronics (University of California Press, Oakland, 1955)zbMATHGoogle Scholar
  43. T.H. Løvass, H.R. Skullerud, D.-H. Kristensen, D. Linhjell, J. Phys. D 20, 1465 (1987)ADSGoogle Scholar
  44. J.J. Lowke, Aust. J. Phys. 28, 489 (1973)Google Scholar
  45. J.J. Lowke, J.H. Parker, Phys. Rev. 181, 302 (1969)ADSGoogle Scholar
  46. E. Mack Jr., J. Am. Chem. Soc. 47, 2468 (1925)Google Scholar
  47. E.A. Mason, E.W. McDaniel, Transport Properties of Ions in Gases (Wiley, New York, 1988)Google Scholar
  48. E.A. Mason, H.W. Schamp Jr., Ann. Phys. 4, 233 (1958)ADSGoogle Scholar
  49. K.B. McAfee, D. Edelson, Proc. Phys. Soc. London 81, 382 (1963)ADSGoogle Scholar
  50. E.W. McDaniel, Collision Phenomena in Ionized Gases (Wiley, New York, 1964)Google Scholar
  51. E.W. McDaniel, E.A. Mason, The Mobility and Diffusion of Ions in Gases (Wiley, New York, 1973)Google Scholar
  52. E.W. McDaniel, D.W. Martin, W.S. Barnes, Rev. Sci. Instrum. 33, 2 (1962)ADSGoogle Scholar
  53. E.W. McDaniel, J.B.A. Mitchell, M.E. Rudd, Atomic Collisions: Heavy Particle Projectiles (Wiley, New York, 1993)Google Scholar
  54. R.M. Melaven, E. Mack Jr., J. Am. Chem. Soc. 54, 888 (1932)Google Scholar
  55. T.M. Miller, J.T. Moseley, D.W. Martin, E.W. McDaniel, Phys. Rev. 173, 115 (1968)ADSGoogle Scholar
  56. J.T. Moseley, R.M. Snuggs, D.W. Martin, E.W. McDaniel, Phys. Rev. Lett. 21, 873 (1968)ADSGoogle Scholar
  57. J.T. Moseley, I.R. Gatland, D.W. Martin, E.W. McDaniel, Phys. Rev. 178, 234 (1969)ADSGoogle Scholar
  58. N.F. Mott, H.S.W. Massey, The Theory of Atomic Collision (Clarendon Press, Oxford, 1965)Google Scholar
  59. K.F. Ness, L.A. Viehland, Chem. Phys. 148, 255 (1990)Google Scholar
  60. A. Pais, Beam Line 27, 4 (1997)Google Scholar
  61. J.H. Parker, Phys. Rev. 139, A1792 (1965)ADSGoogle Scholar
  62. J.H. Parker, J.J. Lowke, Phys. Rev. 181, 290 (1969)ADSGoogle Scholar
  63. J. Philibert, Diffus. Fundam. 4, 6.1 (2006)Google Scholar
  64. H.E. Revercomb, E.A. Mason, Anal. Chem. 47, 970 (1975)Google Scholar
  65. R.E. Robson, Aust. J. Phys. 25, 685 (1972)ADSGoogle Scholar
  66. R.E. Robson, J. Phys. B 9, L337 (1976)ADSGoogle Scholar
  67. R.E. Robson, Introductory Transport Theory for Charged Particles in Gases (World Scientific, Singapore, 2006)zbMATHGoogle Scholar
  68. G. Schultz, G. Charpak, F. Sauli, Rev. Phys. Appl. 12, 67 (1977)Google Scholar
  69. H.R. Skullerud, J. Phys. D 1, 1567 (1968)ADSGoogle Scholar
  70. H.R. Skullerud, J. Phys. B 2, 696 (1969)ADSGoogle Scholar
  71. H.R. Skullerud, J. Phys. B 6, 728 (1973)ADSGoogle Scholar
  72. H.R. Skullerud, J. Phys. B 9, 535 (1976)ADSGoogle Scholar
  73. H.R. Skullerud, J. Phys. B 17, 913 (1984)ADSGoogle Scholar
  74. H.R. Skullerud, Plasma Sources Sci. Tech. 26, 045003 (2017)ADSGoogle Scholar
  75. R.F. Snider, J. Chem. Phys. 32, 1051 (1960)ADSMathSciNetGoogle Scholar
  76. R.K. Standish, Aust. J. Phys. 40, 519 (1987)ADSGoogle Scholar
  77. A.M. Tyndall, The Mobility of Positive Ions in Gases (Cambridge Physical Tracts, Cambridge University Press, Cambridge, 1938)Google Scholar
  78. L.A. Viehland, Chem. Phys. 179, 71 (1994)Google Scholar
  79. Viehland database (2018),
  80. L.A. Viehland, D.W. Fahey, J. Chem. Phys. 78, 435 (1983)ADSGoogle Scholar
  81. L.A. Viehland, S.L. Lin, Chem. Phys. 43, 135 (1979)Google Scholar
  82. L.A. Viehland, E.A. Mason, Ann. Phys. (N.Y.) 91, 499 (1975)Google Scholar
  83. L.A. Viehland, E.A. Mason, J. Chem. Phys. 66, 422 (1977)ADSGoogle Scholar
  84. L.A. Viehland, E.A. Mason, Ann. Phys. (N.Y.) 110, 287 (1978)Google Scholar
  85. L.A. Viehland, E.A. Mason, At. Data Nucl. Data Tables 60, 37 (1995)ADSGoogle Scholar
  86. L.A. Viehland, R.E. Robson, Int. J. Mass Spectrom. Ion Proc. 90, 167 (1989)ADSGoogle Scholar
  87. L.A. Viehland, E.A. Mason, J.H. Whealton, J Phys. B 7, 2433 (1974)ADSGoogle Scholar
  88. L.A. Viehland, S.L. Lin, E.A. Mason, J. Chem. Phys. 54, 341 (1981)Google Scholar
  89. L.A. Viehland, R. Johnsen, B.R. Gray, T.G. Wright, J. Chem. Phys. 144, 074306 (2016)ADSGoogle Scholar
  90. L.A. Viehland, T. Skaist, C. Adhikari, A. Landin, W.F. Siems, Int. J. Ion Mobility Spectrom. 20, 1 (2017)Google Scholar
  91. G.P. von Helden, P.R. Kemper, M.-T. Hsu, M.T. Bowers, J. Chem. Phys. 96, 6591 (1992)ADSGoogle Scholar
  92. E.B. Wagner, F.J. Davis, G.S. Hurst, J. Chem. Phys. 47, 4138 (1967)Google Scholar
  93. M. Waldman, E.A. Mason, Chem. Phys. 58, 121 (1981)Google Scholar
  94. L. Waldmann, Quantum-theoretical transport equations for polyatomic gases, in Statistical Mechanics of Equilibrium and Non-equilibrium; Proc. Int. Symp. Stat. Mech. Thermodyn. at Aachen, Germany, June 15-20, 1964, ed. by J. Meixner. (North-Holland, Amsterdam 1965)Google Scholar
  95. C.S. Wang Chang, G.E. Uhlenbeck, J. de Boer, in Studies in Statistical Mechanics, ed. by J. de Boer, G.E. Uhlenbeck (North-Holland, Amsterdam, 1964)Google Scholar
  96. G.H. Wannier, Phys. Rev. 87, 795 (1952)ADSGoogle Scholar
  97. G.H. Wannier, Bell Syst. Tech. J. 32, 170 (1953)Google Scholar
  98. H.T. Wood, J. Chem. Phys. 54, 977 (1971)ADSGoogle Scholar
  99. A. Yousef, S. Shrestha, L.A. Viehland, E.P.F. Lee, B.R. Gray, V.L. Ayles, T.G. Wright, W.H. Breckenridge, J. Chem. Phys. 127, 154309 (2007)ADSGoogle Scholar
  100. M. Yousfi, A. Hennad, O. Eichwald, J. Appl. Phys. 84, 107 (1998)ADSGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Science DepartmentChatham UniversityPittsburghUSA

Personalised recommendations