Skip to main content

Artificial Neural Networks and Common Spatial Patterns for the Recognition of Motor Information from EEG Signals

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11288))

Abstract

This paper proposes the use of two models of neural networks (Multi Layer Perceptron and Dendrite Morphological Neural Network) for the recognition of voluntary movements from electroencephalographic (EEG) signals. The proposal consisted of three main stages: organization of EEG signals, feature extraction and execution of classification algorithms. The EEG signals were recorded from eighteen healthy subjects performing self-paced reaching movements. Three classification scenarios were evaluated in each participant: Relax versus Intention, Relax versus Execution and Intention versus Execution. The feature extraction stage was carried out by applying an algorithm known as Common Spatial Pattern, in addition to the statistical methods called Root Mean Square, Variance, Standard Deviation and Mean. The results showed that the models of neural networks provided decoding accuracies above chance level, whereby, it is able to detect a movement prior its execution. On the basis of these results, the neural networks are a powerful promising classification technique that can be used to enhance performance in the recognition of motor tasks for BCI systems based on electroencephalographic signals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Guger, C., Allison, B.Z., Edlinger, G. (eds.): Brain-Computer Interface Research. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36083-1

    Book  Google Scholar 

  2. Antelis, J.M., Gudiño-Mendoza, B., Falcón, L.E., Sanchez-Ante, G., Sossa, H.: Dendrite morphological neural networks for motor task recognition from electroencephalographic signals. Biomed. Signal Process. Control 44, 12–24 (2018). https://doi.org/10.1016/j.bspc.2018.03.010

    Article  Google Scholar 

  3. Asensio Cubero, J., Gan, J.Q., Palaniappan, R.: Extracting optimal tempo-spatial features using local discriminant bases and common spatial patterns for brain computer interfacing. Biomed. Signal Process. Control 8(6), 772–778 (2013). https://doi.org/10.1016/j.bspc.2013.07.004

    Article  Google Scholar 

  4. Bayliss, J.D.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 113–116 (2003). https://doi.org/10.1109/TNSRE.2003.814438

    Article  MathSciNet  Google Scholar 

  5. Belhadj, S.A., Benmoussat, N., Krachai, M.D.: CSP features extraction and FLDA classification of EEG-based motor imagery for brain-computer interaction. In: 2015 4th International Conference on Electrical Engineering, ICEE 2015, pp. 3–8 (2016). https://doi.org/10.1109/INTEE.2015.7416697

  6. Combrisson, E., Jerbi, K.: Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy. J. Neurosci. Methods 250, 126–136 (2015). https://doi.org/10.1016/j.jneumeth.2015.01.010

    Article  Google Scholar 

  7. Donchin, E., Spencer, K.M., Wijesinghe, R.: The mental prosthesis: assessing the speed of a P300-based brain-computer interface. IEEE Trans. Rehabil. Eng. 8(2), 174–179 (2000). https://doi.org/10.1109/86.847808

    Article  Google Scholar 

  8. Goutte, C., Gaussier, E.: A probabilistic interpretation of precision, recall and f-score, with implication for. Evaluation 3408, 345–359 (2005). https://doi.org/10.1007/978-3-540-31865-125

  9. Gudiño-Mendoza, B., Sossa, H., Sanchez-Ante, G., Antelis, J.M.: Classification of motor states from brain rhythms using lattice neural networks. In: Martínez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ayala-Ramírez, V., Olvera-López, J.A., Jiang, X. (eds.) MCPR 2016. LNCS, vol. 9703, pp. 303–312. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-39393-3_30

    Chapter  Google Scholar 

  10. Han, R.X., Wei, Q.G.: Feature extraction by combining wavelet packet transform and common spatial pattern in brain-computer interfaces. Appl. Mech. Mater. 239, 974–979 (2013). https://doi.org/10.4028/www.scientific.net/AMM.239-240.974

    Article  Google Scholar 

  11. Hosni, S.M., Gadallah, M.E., Bahgat, S.F., AbdelWahab, M.S.: Classification of EEG signals using different feature extraction techniques for mental-taskBCI. In: 2007 International Conference on Computer Engineering Systems, pp. 220–226 (2007). https://doi.org/10.1109/ICCES.2007.4447052

  12. Iturrate, I., Antelis, J.M., Andrea, K., Minguez, J.: A noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigation. IEEE Trans. Robot. 25(3), 614–627 (2009)

    Article  Google Scholar 

  13. Katona, J., Kovari, A.: EEG-based computer control interface for brain-machine interaction. Int. J. Online Eng. 11(6), 43–48 (2015). https://doi.org/10.3991/ijoe.v11i6.5119

    Article  Google Scholar 

  14. Li, M., Li, W., Zhao, J., Meng, Q., Zeng, M., Chen, G.: A P300 model for cerebot – a mind-controlled humanoid robot. In: Kim, J.-H., Matson, E.T., Myung, H., Xu, P., Karray, F. (eds.) Robot Intelligence Technology and Applications 2. AISC, vol. 274, pp. 495–502. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-05582-4_43

    Chapter  Google Scholar 

  15. Li, Y., et al.: An EEG-based BCI system for 2-D cursor control by combining Mu/Beta rhythm and P300 potential. IEEE Trans. Biomed. Eng. 57(10 PART 1), 2495–2505 (2010). https://doi.org/10.1109/TBME.2010.2055564

    Article  Google Scholar 

  16. Ma, Y., Ding, X., She, Q., Luo, Z., Potter, T., Zhang, Y.: Classification of motor imagery EEG signals with support vector machines and particle swarm optimization. Comput. Math. Methods Med. 2016(5), 667–677 (2016). https://doi.org/10.1155/2016/4941235

    Article  MathSciNet  MATH  Google Scholar 

  17. Purves, D., et al.: Neuroscience, vol. 3 (2004). ISBN 978-0878937257

    Google Scholar 

  18. Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: Proceedings - International Conference on Pattern Recognition, vol. 4, pp. 709–717 (1996). https://doi.org/10.1109/ICPR.1996.547657

  19. Sossa, H., Guevara, E.: Efficient training for dendrite morphological neural networks. Neurocomputing 131, 132–142 (2014). https://doi.org/10.1016/j.neucom.2013.10.031

    Article  Google Scholar 

  20. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002)

    Article  Google Scholar 

  21. Wolpaw, J.R., McFarland, D.J., Neat, G.W., Forneris, C.A.: An EEG-based brain-computer interface for cursor control. Electroencephalogr. Clin. Neurophysiol. 78(3), 252–259 (1991). https://doi.org/10.1016/0013-4694(91)90040-B, http://www.sciencedirect.com/science/article/pii/001346949190040B

    Article  Google Scholar 

  22. Zhang, Y., Zhou, G., Jin, J., Wang, X., Cichocki, A.: Optimizing spatial patterns with sparse filter bands for motor-imagery based brain-computer interface. J. Neurosci. Methods 255, 85–91 (2015). https://doi.org/10.1016/j.jneumeth.2015.08.004

    Article  Google Scholar 

Download references

Acknowledgements

We would like to express our sincere appreciation to the Instituto Politécnico Nacional and the Secretaria de Investigación y Posgrado for the economic support provided to carry out this research. This project was supported economically by SIP-IPN (numbers 20180730 and 20180943) and the National Council of Science and Technology of Mexico (CONACyT) (65 Frontiers of Science, numbers 268958 and PN2015-873).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Daniel Virgilio Gonzalez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Virgilio Gonzalez, C.D., Sossa Azuela, J.H., Antelis, J.M. (2018). Artificial Neural Networks and Common Spatial Patterns for the Recognition of Motor Information from EEG Signals. In: Batyrshin, I., Martínez-Villaseñor, M., Ponce Espinosa, H. (eds) Advances in Soft Computing. MICAI 2018. Lecture Notes in Computer Science(), vol 11288. Springer, Cham. https://doi.org/10.1007/978-3-030-04491-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04491-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04490-9

  • Online ISBN: 978-3-030-04491-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics