Advertisement

From Branly Coherer to Chua Memristor

  • Jean-Marc GinouxEmail author
  • Thomas Cuff
Chapter

Abstract

Starting from historical research, this work aims first to recall the origin of arc plasma science and one of its most important applications: Wireless Telegraphy. At the beginning of the twentieth century, William du Bois Duddell discovered by chance that the “singing arc”, a carbon arc lamp, was able to generate the propagation of electromagnetic waves, highlighted by Heinrich Hertz a few years before. Thus, it appeared that this device could therefore be used as an emitter for the emerging radiotelegraphy. Once the problem of the emission of a stable regime of sustained radio waves was solved, the next issue was to build a radio frequency detector. The solution to this problem was brought by Édouard Branly who invented the “coherer”. Although the coherer has been almost immediately superseded by diodes and triodes, its working principle, the so-called “Branly effect”, gave rise to extensive investigations till very recently. In fact, subjected to electromagnetic waves, the coherer’s electrical resistance varied from high to low and persisted after the radio signal was removed. Such bistable behavior led to consider the coherer as a memory device and many attempts were made during the early 1950s to study the feasibility of coherer-based computer memories. In 1971, Leon Chua postulated the existence of a missing electrical element, the “memristor”, which was finally discovered ten years ago. Nowadays, memristors are intended to be used as memory elements in computer machines. So, the main goal of this work is to highlight the existing strong similarity between Branly coherer and Chua memristor and to show that, Branly coherer as well as the singing arc are the very first memristors.

References

  1. 1.
    A. Anders, Tracking down the origin of arc plasma science I. Early pulsed and oscillating discharges. IEEE Trans. Plasma Sci. 31(5), 1052–1059 (2003)ADSCrossRefGoogle Scholar
  2. 2.
    Sur la lumière du baromètre [On the light of the barometer], Histoire de l’Académie Royale des sciences de Paris, 2, 202–203 (1694)Google Scholar
  3. 3.
    C. Dorsman, C.A. Crommelin, The invention of the Leyden jar. Communication n\(^{{\rm o}}\) 97 from the National Museum of the History of Science Leyden, 276–280 (1957)Google Scholar
  4. 4.
    A. Volta, Collezione dell’ Opere del Cavaliere Conte Alessandro Volta, 3 Vol (Firenze, 1816)Google Scholar
  5. 5.
    J.-M. Ginoux, B. Rossetto, The singing arc: the oldest memristor? in Chaos, CNN, Memristors and Beyond: A Festschrift for Leon Chua, ed. by A. Adamatsky, G. Chen (World Scientific Publishing, Singapore, 2013), pp. 494–507Google Scholar
  6. 6.
    A. Volta, On the electricity excited by the mere contact of conducting substances of different kinds. In a letter from Mr. Alexander Volta, F. R. S. Professor of Natural Philosophy in the University of Pavia, to the Rt. Hon. Sir Joseph Banks, Bart. K. B. P. R. S. Phil. Trans. R. Soc. Lond. 90, 430–431 (1800)CrossRefGoogle Scholar
  7. 7.
    A.M. Ampère, Mémoire sur les effets des courants électriques. Annales de Chimie et de Physique 15, 59–74 and 170–218 (1820)Google Scholar
  8. 8.
    A. Anders, Tracking down the origin of arc plasma science II. Early continuous discharges. IEEE Trans. Plasma Sci. 31(5), 1060–1069 (2003)ADSCrossRefGoogle Scholar
  9. 9.
    H. Ayrton, The Electric Arc (The Electrician Printing and Publishing Company, London, 1902)Google Scholar
  10. 10.
    H. Davy, An account of some experiments on galvanic electricity made in the theatre of the royal institution. J. R. Inst. I, 166–182 (1802) reprinted in Collected Works of Sir Humphry Davy, Vol. II: Early Miscellaneous Papers, ed. by J. Davy (Smith, Elder and Cornhill, London, 1839)Google Scholar
  11. 11.
    V.P. Kartsev, V.V. Petrov’s hypothetical experiment and electrical experiments of the 18th century, in Nature Mathematized: Historical and Philosophical Case Studies in Classical Modern Natural Philosophy, The Western Ontario Series in Philosophy of Science, vol. 20(1), ed. by W.R. Shea (D. Reidel Publishing Company, Dordrecht), pp. 279–289 (1983)Google Scholar
  12. 12.
    V.V. Petrov, News of the Galvani-Voltaic Experiments Which Professor of Physics Vasily Petrov had Conducted by Means of a Particularly Huge Battery Consisting at Times of 4200 Copper and Zinc Disks and Installed at St. Petersburg Medicine and Surgery Academy (in Russian) (St. Petersburg’s Medical and Surgical Academy, St. Petersburg, Russia, 1803)Google Scholar
  13. 13.
    H. Davy, Elements of Chemical Philosophy, Part I, vol. I (J. Johnson, London, 1812)Google Scholar
  14. 14.
    F. Arago, Expériences relatives à l’aimantation du fer et de l’acier par l’action du courant voltaïque. Annales de Chimie et de Physique 15, 93–102 (1820)Google Scholar
  15. 15.
    H. Davy, Farther researches on the magnetic phenomena conducting powers and temperature the properties of electrified bodies in their relations to produced by electricity; with some new experiments on the properties of electrified bodies in their relations to conducting powers and temperature. Philos. Trans. R. Soc. Lond. 111, 425–439 (1821)ADSCrossRefGoogle Scholar
  16. 16.
    A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation, Springer Series on Atomic, Optical, and Plasma Physics, vol. 50 (Springer, New York, 2008)Google Scholar
  17. 17.
    R. Stanley, Wireless Telegraphy, vol. 1 and 2 (Longmans, Green & Co, New York, 1919)Google Scholar
  18. 18.
    W. du Bois Duddell, On rapid variations in the current through the direct-current arc. J. Inst. Electr. Eng. 30(148), 232–283 (1900)Google Scholar
  19. 19.
    W. du Bois Duddell, On rapid variations in the current through the direct-current arc. The Electrician, 46, 269–273 and 310–313 (1900)Google Scholar
  20. 20.
    H. Poincaré, La théorie de Maxwell et les oscillations hertziennes : la télégraphie sans fil, 3e éd. (Gauthier-Villars, Paris, 1907)Google Scholar
  21. 21.
    H. Poincaré, Sur la télégraphie sans fil. La Lumière Électrique, II4, 259–266, 291–297, 323–327, 355–359 and 387–393 (1908)Google Scholar
  22. 22.
    J.-M. Ginoux, L. Petitgirard, Poincaré’s forgotten conferences on wireless telegraphy. Int. J. Bifurc. Chaos 20(11), 3617–3626 (2010)CrossRefGoogle Scholar
  23. 23.
    J.-M. Ginoux, Analyse mathématique des phénomènes oscillatoires non linéaires, Thèse (Université Pierre & Marie Curie, Paris VI, 2011)Google Scholar
  24. 24.
    J.-M. Ginoux, C. Letellier, Van der Pol and the history of relaxation oscillations: toward the emergence of a concepts. Chaos 22, 023120 (2012)ADSMathSciNetCrossRefGoogle Scholar
  25. 25.
    J.-M. Ginoux, Self-excited oscillations: from Poincaé to Andronov, Nieuw Archief voor Wiskunde (New Archive for Mathematics) journal published by the Royal Dutch Mathematical Society (Koninklijk Wiskundig Genootschap), 5, 13, n\(^3\), 170–177 (September 2012)Google Scholar
  26. 26.
    J.-M. Ginoux, R. Lozi, Blondel et les oscillations auto-entretenues. Arch. Hist. Exact Sci. 1–46 (17 May 2012)Google Scholar
  27. 27.
    J.-M. Ginoux, Histoire de la théorie des oscillations non linéaires (Hermann, Paris, 2015)Google Scholar
  28. 28.
    J.-M. Ginoux, History of Nonlinear Oscillations Theory, Archimede, New Studies in the History and Philosophy of Science and Technology (Springer, New York, 2016)Google Scholar
  29. 29.
    J.-M. Ginoux, From nonlinear oscillations to chaos theory, in The Foundations of Chaos Revisited: From Poincaré to Recent Advancements, Understanding Complex Systems, ed. by C. Skiadas (Springer, Cham, 2016), pp. 27–47Google Scholar
  30. 30.
    J.-M. Ginoux, History of Nonlinear Oscillation Theory in France (1880–1940) Archimedes Series, vol. 49 (Springer International Publishing, Berlin, 2017), p. 381Google Scholar
  31. 31.
    J.-M. Dilhac, Edouard Branly, the Coherer, and the Branly effect [History of Communications]. IEEE Commun. Mag. 47(9), 20–26 (2009)CrossRefGoogle Scholar
  32. 32.
    E. Branly, Variations de conductibilité sous diverses influences électriques. Comptes Rendus de l’Académie des Sciences 111, 785–787 (1890)Google Scholar
  33. 33.
    E. Branly, Variations de conductibilité sous diverses influences électriques. La Lumière Électrique 40(20), 301–309 and 506–511 (1891)Google Scholar
  34. 34.
    E. Branly, Variations of conductivity under electrical influence. The Electrician XXVII, 221–222 and 448–449 (1891)Google Scholar
  35. 35.
    O.J. Lodge, Signalling Through Space Without Wires, The Work of Hertz & His Successors (D. Van Nostrand Company, London, 1908)Google Scholar
  36. 36.
    E. Falcon, B. Castaing, Electrical conductivity in granular media and Branly’s coherer: a simple experiment. Am. J. Phys. 74(4), 302–306 (2005)ADSCrossRefGoogle Scholar
  37. 37.
    E. Branly, Sur la conductibilité électrique des substances conductrices discontinues, à propos de la télégraphie sans fil. Comptes Rendus de l’Académie des Sciences 125, 939–942 (1897)Google Scholar
  38. 38.
    E. Branly, Radioconducteurs limailles d’or et platine. Comptes Rendus de l’Académie des Sciences 127, 1206–1207 (1898)Google Scholar
  39. 39.
    E. Branly, Accroissements de Résistance des Radioconducteurs. Comptes Rendus de l’Académie des Sciences 130, 1068–1071 (1900)Google Scholar
  40. 40.
    J.R. Bowman, F.A. Schwertz, R.T. Steinback, B.O. Marshall Jr. Computer Components Fellowship No. 347, Quarterly Reports No. 1 (October 11, 1950, to January 11, 1951), Air Force Cambridge Research Laboratory, Mellon Institute Of Industrial Research, University of Pittsburgh, Pittsburgh, PA, Contract No. CLN AF 19/122/-376Google Scholar
  41. 41.
    J.R. Bowman, F.A. Schwertz, B. Moffat, R.T. Steinback, B.O. Marshall Jr. Computer Components Fellowship No. 347, Quarterly Reports No. 3 (April 11, 1951, to July 11. 1951) Air Force Cambridge Research Laboratory, Mellon Institute Of Industrial Research, University of Pittsburgh, Pittsburgh, PA, Contract No. CLN AF 19/122/-376Google Scholar
  42. 42.
    J.R. Bowman, F.A. Schwertz, A. Milch, B. Moffat, R.T. Steinback, L. Nickel, B.O. Marshall Jr. Computer Components Fellowship No. 347, Quarterly Reports No. 4 (July 10, 1951 to Oct. 10, 1951) Air Force Cambridge Research Laboratory, Mellon Institute Of Industrial Research, University of Pittsburgh, Pittsburgh, PA, Contract No. CLN AF 19/122/-376Google Scholar
  43. 43.
    J.R. Bowman, F.A. Schwertz, A. Milch, B. Moffat, R.T. Steinback, L. Nickel, B.O. Marshall Jr. Computer Components Fellowship No. 347, Quarterly Reports No. 5 (Oct. ll, 1951 to Jan. 10, 1952) Air Force Cambridge Research Laboratory, Mellon Institute Of Industrial Research, University of Pittsburgh, Pittsburgh, PA, Contract No. CLN AF 19/12.2/-376Google Scholar
  44. 44.
    T. Cuff, Coherers, A Review (M.S.E. Temple University, Philadelphia, 1993)Google Scholar
  45. 45.
    S. Hong, Wireless, From Marconi’s Black-Box to the Audion, Transformations: Studies in the History of Science and Technology (MIT Press, Cambridge, MA, 2001), 272 pGoogle Scholar
  46. 46.
    W. Eccles, On coherers. Proc. Phys. Soc. Lond. 22, 289–312 (1909)CrossRefGoogle Scholar
  47. 47.
    R. Holm, Electric Contacts, Stockholm (Almquist & Wiksells Akademiska Handbocker, Hugo Gebers Forlag, 1946)Google Scholar
  48. 48.
    J.P. Eckert, A survey of digital computer memory systems. Proc. IEEE 41, 1393–1406 (1953)MathSciNetGoogle Scholar
  49. 49.
    F.B. Wood, The coherer as a storage element, IBM Confidential Report, IBM Research and Development Laboratory, Code 203.002.047 (22 September 1953)Google Scholar
  50. 50.
    F.B. Wood, Coherer bibliography, IBM Confidential Report, IBM Research and Development Laboratory, Code 203.001.063 (28 April 1954)Google Scholar
  51. 51.
    F.B. Wood, Coherers characteristics part I, introduction, physical phenomena, probability and time delay, IBM Confidential Report, IBM Research and Development Laboratory, Code 203.142.102 (11 May 1956)Google Scholar
  52. 52.
    F.B. Wood, Coherers characteristics part II, materials, life test, reliability and applications, IBM Confidential Report, IBM Research and Development Laboratory, Code 203.143.107 (14 May 1956)Google Scholar
  53. 53.
    D.B. Strukhov, G.S. Snider, G.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 8083 (2008)Google Scholar
  54. 54.
    L.O. Chua, Memristor - the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)CrossRefGoogle Scholar
  55. 55.
    L.O. Chua, S.M. Kang, Memristive devices and systems. Proc. IEEE 64, 209–223 (1976)MathSciNetCrossRefGoogle Scholar
  56. 56.
    L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A 102, 765–783 (2011)ADSCrossRefGoogle Scholar
  57. 57.
    S.P. Adhikari, M.P. Sah, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuit Syst. 60, 3008–3021 (2013)CrossRefGoogle Scholar
  58. 58.
    G. Gandhi, V. Aggarwal, L.O. Chua, The first radios were made using memristors!. IEEE Circuits Syst. Mag. 13(2), 8–16 (2013)CrossRefGoogle Scholar
  59. 59.
    G. Gandhi, V. Aggarwal, L.O. Chua, Coherer is the elusive memristor, IEEE International Symposium on Circuits and Systems (ISCAS), Melbourne, Victoria, Australia, 2245–2248 (June 1–5, 2014)Google Scholar
  60. 60.
    G. Gandhi, V. Aggarwal, Canonic memristor: bipolar electrical switching in metal-metal contacts, in Advances in Memristors, Memristive Devices and Systems Studies in Computational Intelligence, vol. 701, ed. by S. Vaidyanathan, C. Volos (Springer, Cham, 2017), pp. 263–273CrossRefGoogle Scholar
  61. 61.
    J.C. Bose, On the change of conductivity of metallic particles under cyclic electromotive variation. The Electrician 47, 830–877 (1901)Google Scholar
  62. 62.
    S. Stathopoulos, A. Khiat, M. Trapatseli, S. Cortese, A. Serb, I. Valov, T. Prodromakis, Multibit memory operation of metal-oxide bi-layer memristors. Sci Rep 7, 17532 (2017)ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Université de Toulon (TLN)La GardeFrance
  2. 2.Laboratoire d’Informatique et des Systmes, UMR, CNRS 7020MarseilleFrance
  3. 3.Archives Henri Poincaré, UMR CNRS 7117NancyFrance
  4. 4.Frederick Community CollegeFrederickUSA

Personalised recommendations