Skip to main content

Iterative Non-iterative Integrals in Quantum Field Theory

Part of the Texts & Monographs in Symbolic Computation book series (TEXTSMONOGR)

Abstract

Single scale Feynman integrals in quantum field theories obey difference or differential equations with respect to their discrete parameter N or continuous parameter x. The analysis of these equations reveals to which order they factorize, which can be different in both cases. The simplest systems decouple to linear differential equations which factorize to first-order. For them complete solution algorithms exist. The next interesting level is formed by those cases that decouple to linear differential equations in which also irreducible second-order factors emerge. We give a survey on the latter case. The solutions can be obtained as general \(_2F_1\) solutions. The corresponding solutions of the associated inhomogeneous differential equations form so-called iterative non-iterative integrals. There are known conditions under which one may represent the solutions by complete elliptic integrals. In this case one may find representations in terms of meromorphic modular forms, out of which special cases allow representations in the framework of elliptic polylogarithms with generalized parameters. These are in general weighted by a power of \(1/\eta (\tau )\), where \(\eta (\tau )\) is Dedekind’s \(\eta \)-function. Single scale elliptic solutions emerge in the \(\rho \)-parameter, which we use as an illustrative example. They also occur in the 3-loop QCD corrections to massive operator matrix elements and the massive 3-loop form factors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Iterative non-iterative integrals have been introduced by the author in a talk on the 5th International Congress on Mathematical Software, held at FU Berlin, July 11–14, 2016, with a series of colleagues present, cf. [41].

  2. 2.

    In the present case only single poles appear; for Fuchsian differential equations q(x) may have double poles.

  3. 3.

    Here we use the notation applied by Mathematica. In some part of the literature one defines: etc.

  4. 4.

    This will not apply to simpler cases like or , however.

  5. 5.

    The dimension of the corresponding vector space can be also calculated using the Sage program by W. Stein [113].

  6. 6.

    This is, besides the well-know Landen transformation [78, 123], the next higher modular transformation; for a survey cf. [124]. Also for the hypergeometric function there are rational modular transformations [125].

References

  1. J. Blümlein, D.J. Broadhurst, J.A.M. Vermaseren, Comput. Phys. Commun. 181, 582 (2010), arXiv:0907.2557 [math-ph]

  2. J. Ablinger, J. Blümlein, C. Schneider, J. Math. Phys. 52, 102301 (2011), arXiv:1105.6063 [math-ph]

  3. J. Ablinger, J. Blümlein, C. Schneider, J. Math. Phys. 54, 082301 (2013), arXiv:1302.0378 [math-ph]

  4. J. Ablinger, J. Blümlein, C.G. Raab, C. Schneider, J. Math. Phys. 55, 112301 (2014), arXiv:1407.1822 [hep-th]

  5. S. Laporta, Phys. Lett. B 772, 232 (2017), arXiv:1704.06996 [hep-ph]

  6. P.A. Baikov, K.G. Chetyrkin, J.H. Kühn, Phys. Rev. Lett. 118(8), 082002 (2017), arXiv:1606.08659 [hep-ph]

  7. F. Herzog, B. Ruijl, T. Ueda, J.A.M. Vermaseren, A. Vogt, JHEP 1702, 090 (2017), arXiv:1701.01404 [hep-ph]

  8. T. Luthe, A. Maier, P. Marquard, Y. Schröder, JHEP 1710, 166 (2017), arXiv:1709.07718 [hep-ph]

  9. J.A.M. Vermaseren, A. Vogt, S. Moch, Nucl. Phys. B 724, 3 (2005), arXiv:0504242 [hep-ph/0504242]

  10. S. Moch, J.A.M. Vermaseren, A. Vogt, Nucl. Phys. B 688, 101 (2004), arXiv:0403192 [hep-ph/0403192]

  11. A. Vogt, S. Moch, J.A.M. Vermaseren, Nucl. Phys. B 691, 129 (2004), arXiv:0404111 [hep-ph/0404111]

  12. J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Nucl. Phys. B 922, 1 (2017), arXiv:1705.01508 [hep-ph]

  13. J. Ablinger, J. Blümlein, S. Klein, C. Schneider, F. Wißbrock, Nucl. Phys. B 844, 26 (2011), arXiv:1008.3347 [hep-ph]

  14. J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, Nucl. Phys. B 886, 733 (2014), arXiv:1406.4654 [hep-ph]

  15. J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Nucl. Phys. B 890, 48 (2014), arXiv:1409.1135 [hep-ph]

  16. J. Ablinger, J. Blümlein, A. De Freitas, A. Hasselhuhn, A. von Manteuffel, M. Round, C. Schneider, F. Wißbrock, Nucl. Phys. B 882, 263 (2014), arXiv:1402.0359 [hep-ph]

  17. A. Behring, I. Bierenbaum, J. Blümlein, A. De Freitas, S. Klein, F. Wißbrock, Eur. Phys. J. C 74(9), 3033 (2014), arXiv:1403.6356 [hep-ph]

  18. K.G. Wilson, Phys. Rev. 179, 1499 (1969); R.A. Brandt, Fortsch. Phys. 18, 249 (1970); W. Zimmermann, Lecturer on Elementary Particle Physics and Quantum Field Theory, Brandeis Summer Inst., vol. 1 (MIT Press, Cambridge, 1970), p. 395; Y. Frishman, Ann. Phys. 66, 373 (1971)

    Google Scholar 

  19. N.E. Nörlund, Vorlesungen über Differenzenrechnung (Springer, Berlin, 1924)

    Book  Google Scholar 

  20. B. Zürcher, Rationale Normalformen von pseudo-linearen Abbildungen, Master’s thesis, Mathematik, ETH Zürich (1994)

    Google Scholar 

  21. S. Gerhold, Uncoupling systems of linear Ore operator equations, Master’s thesis, RISC, J. Kepler University, Linz (2002)

    Google Scholar 

  22. C. Schneider, A. De Freitas, J. Blümlein, PoS (LL2014), 017, arXiv:1407.2537 [cs.SC]

  23. J. Ablinger, A. Behring, J. Blümlein, A. De Freitas, A. von Manteuffel, C. Schneider, Comput. Phys. Commun. 202, 33 (2016), arXiv:1509.08324 [hep-ph]

  24. C. Schneider, Sém. Lothar. Combin. 56(1) (2007). article B56b

    Google Scholar 

  25. C. Schneider, in Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions Texts and Monographs in Symbolic Computation eds. C. Schneider, J. Blümlein, vol. 325 (Springer, Wien, 2013), arXiv:1304.4134 [cs.SC]

  26. J. Ablinger, J. Blümlein, S. Klein, C. Schneider, Nucl. Phys. Proc. Suppl. 205–206, 110 (2010). arXiv:1006.4797 [math-ph]; J. Blümlein, A. Hasselhuhn, C. Schneider, PoS (RADCOR 2011), 032. arXiv:1202.4303 [math-ph]; C. Schneider, Computer Algebra Rundbrief 53(8) (2013) ; C. Schneider, J. Phys. Conf. Ser. 523, 012037 (2014), arXiv:1310.0160 [cs.SC]

  27. A.V. Kotikov, Phys. Lett. B 254,158 (1991); Z. Bern, L.J. Dixon, D.A. Kosower, Phys. Lett. B 302, 299 (1993). Erratum: [Phys. Lett. B 318, 649 (1993)] [hep-ph/9212308]; Nucl. Phys. B 412, 751 (1994) [hep-ph/9306240]; E. Remiddi, Nuovo Cim. A 110, 1435 (1997) [hep-th/9711188]; M. Caffo, H. Czyz, S. Laporta, E. Remiddi, Acta Phys. Polon. B 29, 2627 (1998) [hep-th/9807119]; Nuovo Cim. A 111, 365 (1998) [hep-th/9805118]; T. Gehrmann, E. Remiddi, Nucl. Phys. B 580, 485 (2000) [hep-ph/9912329]; J.M. Henn, Phys. Rev. Lett. 110, 251601 (2013). arXiv:1304.1806 [hep-th]

  28. J. Lagrange, Nouvelles recherches sur la nature et la propagation du son, Miscellanea Taurinensis, t. II, 1760–1761; Oeuvres t. I, p. 263; C.F. Gauß, Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum methodo novo tractate, Commentationes societas scientiarum Gottingensis recentiores, Vol III, 1813, Werke Bd. V pp. 5–7; G. Green, Essay on the Mathematical Theory of Electricity and Magnetism, Nottingham, 1828 [Green Papers, pp. 1–115]; M. Ostrogradski, Mem. Ac. Sci. St. Peters. 6, 129 (1831); K.G. Chetyrkin, F.V. Tkachov, Nucl. Phys. B 192, 159 (1981); S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000) [hep-ph/0102033]; C. Studerus, Comput. Phys. Commun. 181, 1293 (2010). arXiv:0912.2546 [physics.comp-ph]; A. von Manteuffel, C. Studerus, Reduze 2 - Distributed Feynman Integral Reduction. arXiv:1201.4330 [hep-ph]; P. Marquard, D. Seidel, TheCrusheralgorithm, (unpublished)

  29. J. Blümlein, C. Schneider, Int., J. Mod. Phys. A 33(17), 1830015 (2018)

    Google Scholar 

  30. J.A.M. Vermaseren, Int. J. Mod. Phys. A 14, 2037 (1999), arXiv:hep-ph/9806280

  31. J. Blümlein, S. Kurth, Phys. Rev. D 60, 014018 (1999), arXiv:hep-ph/9810241

  32. E. Remiddi, J.A.M. Vermaseren, Int. J. Mod. Phys. A 15, 725 (2000), arXiv:9905237 [hep-ph/9905237]

    Article  MathSciNet  Google Scholar 

  33. E.E. Kummer, Journal für die reine und angewandte Mathematik (Crelle) 21, 74 (1840); H. Poincaré, Acta Math. 4, 201 (1884); A. Jonquière, Bihang till Kongl. Svenska Vetenskaps-Akademiens Handlingar 15, 1 (1889); J.A. Lappo-Danilevsky, Mémoirs sur la Théorie des Systèmes Différentielles Linéaires, (Chelsea Publ. Co, New York, 1953); K.T. Chen, Trans. A.M.S. 156(3), 359 (1971); A.B. Goncharov, Math. Res. Lett. 5, 497 (1998)

    Google Scholar 

  34. S. Moch, P. Uwer, S. Weinzierl, J. Math. Phys. 43, 3363 (2002), arXiv:0110083 [hep-ph/0110083]

  35. J. Ablinger, J. Blümlein, C. Schneider, J. Phys. Conf. Ser. 523, 012060 (2014), arXiv:1310.5645 [math-ph]

  36. J. Ablinger, J. Blümlein, arXiv:1304.7071 [math-ph]

  37. M.E. Hoffman, J. Algebr. Comb. 11, 49 (2000)

    Google Scholar 

  38. J. Blümlein, Comput. Phys. Commun. 159, 19 (2004), arXiv:0311046 [hep-ph/0311046]

  39. J. Ablinger, PoS (LL2014), 019; A Computer Algebra Toolbox for Harmonic Sums Related to Particle Physics, Diploma Thesis, J. Kepler University Linz, (2009), arXiv:1011.1176 [math-ph]

  40. J. Ablinger, Computer Algebra Algorithms for Special Functions in Particle Physics, Ph.D. thesis, J. Kepler University Linz, (2012), arXiv:1305.0687 [math-ph]

  41. The 5th International Congress on Mathematical Software ZIB Berlin from July 11–14 (2016); Session: Symbolic computation and elementary particle physics. https://www.risc.jku.at/conferences/ICMS2016/; see also J.B.s talk at QCD@LHC2016, U. Zürich, August 22–26 (2016). https://indico.cern.ch/event/516210/timetable/#all.detailed

  42. L. Euler, Recherches sur la question des inegalites du mouvement de Saturne et de Jupiter, sujet propose pour le prix de l’annee 1748, (Paris, France: G. Martin, J.B. Coignard, H.L. Guerin, 1749); J.-L. Lagrange, Solution de différens problémes du calcul integral, Mélanges de philosophie et de mathématique de la Société royale de Turin, vol. 3, pp. 179; E. Kamke, Differentialgleichungen: Lösungsmethoden und Lösungen, (Geest & Portig, Leipzig, 1967), 8th Edn

    Google Scholar 

  43. J. Ablinger, J. Blümlein, A. De Freitas, M. van Hoeij, E. Imamoglu, C.G. Raab, C.S. Radu, C. Schneider, J. Math. Phys. 59(6), 062305 (2018), arXiv:1706.01299 [hep-th]

  44. J. Blümlein, A. De Freitas, M. Van Hoeij, E. Imamoglu, P. Marquard, C. Schneider, PoS (LL2018), 017, arXiv:1807.05287 [hep-ph]

  45. A. Sabry, Nucl. Phys. 33, 401 (1962)

    Google Scholar 

  46. D.J. Broadhurst, Z. Phys. C 47, 115 (1990); D.J. Broadhurst, J. Fleischer, O.V. Tarasov, Z. Phys. C 60, 287 (1993). arXiv:9304303 [hep-ph/9304303]; F.A. Berends, M. Buza, M. Böhm, R. Scharf, Z. Phys. C 63, 227 (1994); S. Bauberger, M. Böhm, G. Weiglein, F.A. Berends, M. Buza, Nucl. Phys. Proc. Suppl. 37B(2), 95 (1994). arXiv:9406404 [hep-ph/9406404]; S. Bauberger, M. Böhm, Nucl. Phys. B 445, 25 (1995), arXiv:9501201 [hep-ph/9501201]

  47. M. Caffo, H. Czyz, E. Remiddi, Nucl. Phys. B 634, 309 (2002), arXiv:0203256 [hep-ph/0203256]

  48. S. Laporta, E. Remiddi, Nucl. Phys. B 704, 349 (2005), arXiv:0406160 [hep-ph/0406160]

  49. S. Pozzorini, E. Remiddi, Comput. Phys. Commun. 175, 381 (2006). arXiv:0505041 [hep-ph/0505041]; S. Groote, J.G. Körner, A.A. Pivovarov, Annals Phys. 322, 2374 (2007). arXiv:0506286 [hep-ph/0506286]; B.A. Kniehl, A.V. Kotikov, A. Onishchenko, O. Veretin, Nucl. Phys. B 738, 306 (2006). arXiv:0510235 [hep-ph/0510235]; M. Caffo, H. Czyz, M. Gunia, E. Remiddi, Comput. Phys. Commun. 180, 427 (2009), arXiv:0807.1959 [hep-ph]

  50. U. Aglietti, R. Bonciani, L. Grassi, E. Remiddi, Nucl. Phys. B 789, 45 (2008), arXiv:0705.2616 [hep-ph]

  51. D.H. Bailey, J.M. Borwein, D. Broadhurst, M.L. Glasser, J. Phys. A 41, 205203 (2008), arXiv:0801.0891 [hep-th]

  52. D. Broadhurst, arXiv:0801.4813 [hep-th]

  53. S. Müller-Stach, S. Weinzierl, R. Zayadeh, Commun. Num. Theor. Phys. 6, 203 (2012), arXiv:1112.4360 [hep-ph]; S. Groote, J.G. Körner, A.A. Pivovarov, Eur. Phys. J. C 72, 2085 (2012), arXiv:1204.0694 [hep-ph]; S. Müller-Stach, S. Weinzierl, R. Zayadeh, Commun. Math. Phys. 326, 237 (2014), arXiv:1212.4389 [hep-ph]; M. Søgaard, Y. Zhang, Phys. Rev. D 91, 081701 (2015), arXiv:1412.5577

  54. S. Bloch, P. Vanhove, J. Number Theor. 148, 328 (2015)

    Google Scholar 

  55. L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 54, 052303 (2013), arXiv:1302.7004 [hep-ph]; E. Remiddi, L. Tancredi, Nucl. Phys. B 880, 343 (2014), arXiv:1311.3342 [hep-ph]

  56. L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 56(7), 072303 (2015), arXiv:1504.03255 [hep-ph]

  57. L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 57(3), 032304 (2016), arXiv:1512.05630 [hep-ph]

  58. L. Adams, C. Bogner, S. Weinzierl, PoS (LL2016), 033, arXiv:1606.09457 [hep-ph]; S. Bloch, M. Kerr, P. Vanhove, Compos. Math. 151, 2329 (2015)

  59. L. Adams, C. Bogner, S. Weinzierl, J. Math. Phys. 55(10), 102301 (2014), arXiv:1405.5640, [hep-ph]

  60. E. Remiddi, L. Tancredi, Nucl. Phys. B 907, 400 (2016), arXiv:1602.01481 [hep-ph]

  61. L. Adams, C. Bogner, A. Schweitzer, S. Weinzierl, J. Math. Phys. 57, 122302 (2016), arXiv:1607.01571 [hep-ph]

  62. J. Brödel, C.R. Mafra, N. Matthes, O. Schlotterer, JHEP 1507, 112 (2015), arXiv:1412.5535 [hep-th]; R. Bonciani, V. Del Duca, H. Frellesvig, J.M. Henn, F. Moriello, V.A. Smirnov, JHEP 1612, 096 (2016), arXiv:1609.06685 [hep-ph]; A. Primo, L. Tancredi, Nucl. Phys. B 916, 94 (2017), arXiv:1610.08397 [hep-ph]; Nucl. Phys. B 921, 316 (2017), arXiv:1704.05465 [hep-ph]

  63. G. Passarino, Eur. Phys. J. C 77(2), 77 (2017), arXiv:1610.06207 [math-ph]

  64. A. von Manteuffel, L. Tancredi, JHEP 1706, 127 (2017), arXiv:1701.05905 [hep-ph]

  65. L. Adams, S. Weinzierl, Commun. Num. Theor. Phys. 12, 193 (2018), arXiv:1704.08895 [hep-ph]

  66. C. Bogner, A. Schweitzer, S. Weinzierl, Nucl. Phys. B 922, 528 (2017), arXiv:1705.08952; arXiv:1807.02542 [hep-th], contribution to this volume; E. Remiddi, L. Tancredi, Nucl. Phys. B 925, 212 (2017), arXiv:1709.03622; R.N. Lee, A.V. Smirnov, V.A. Smirnov, JHEP 03, 008 (2018), arXiv:1709.07525; J.L. Bourjaily, A.J. McLeod, M. Spradlin, M. von Hippel, M. Wilhelm, Phys. Rev. Lett. 120, 121603 (2018), arXiv:1712.02785; M. Hidding, F. Moriello, arXiv:1712.04441; J. Brödel, C. Duhr, F. Dulat, L. Tancredi, JHEP 05, 093 (2018), arXiv:1712.07089; J. Brödel, C. Duhr, F. Dulat, L. Tancredi, Phys. Rev. D 97, 116009 (2018), arXiv:1712.07095; L. Adams, S. Weinzierl, Phys. Lett. B 781, 270 (2018), arXiv:1802.05020; J. Brödel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, arXiv:1705.089520; S. Groote, J.G.Körner, arXiv:1705.089521; L. Adams, E. Chaubey, S. Weinzierl, arXiv:1705.089522; L. Adams, E. Chaubey, S. Weinzierl, arXiv:1705.089523; R.N. Lee, A.V. Smirnov, V.A. Smirnov, arXiv:1705.089524; J. Brödel, C. Duhr, F. Dulat, B. Penante, L. Tancredi, arXiv:1705.089525, contribution to this volume; L. Adams, S. Weinzierl, arXiv:1705.089526, contribution to this volume; C. Bogner, A. Schweitzer, S. Weinzierl, arXiv:1807.02542 [hep-th], contribution to this volume; P. Vanhove, arXiv:1705.089528 [hep-th], contribution to this volume; K. Acres, D. Broadhurst, contribution to this volume; Y. Zhou, contribution to this volume; R. Bonciani, M. Capozi, P. Caucal, contribution to this volume

  67. J. Grigo, J. Hoff, P. Marquard, M. Steinhauser, Nucl. Phys. B 864, 580 (2012), arXiv:1206.3418 [hep-ph]

  68. K. Heun, Math. Ann. 33, 161 (1889); A. Ronveaux, ed., Heun’s differential equations (The Clarendon Press Oxford, Oxford, 1995); J. Ablinger et al., in preparation

    Google Scholar 

  69. C.F. Gauß, Disquisitiones generales circa seriem infinitam  \({\displaystyle 1+{\tfrac{\alpha \beta }{1\cdot \gamma }}\,x +{\tfrac{\alpha (\alpha +1)\beta (\beta +1)}{1\cdot 2\cdot \gamma (\gamma +1)}}\,x\,x+{\text{etc.}}}\), Commentationes societatis regiae scientarum Gottingensis recentiores (1813)

    Google Scholar 

  70. F. Klein, Vorlesungen über die hypergeometrische Funktion, Wintersemester 1893/1894, Die Grundlehren der Mathematischen Wissenschaften 39, (Springer, Berlin, 1933); W.N. Bailey, Generalized Hypergeometric Series, (Cambridge University Press, Cambridge, 1935); P. Appell, J. Kampé de Fériet, Fonctions Hypergéométriques et Hyperspériques, Polynomes D’ Hermite, (Gauthier-Villars, Paris, 1926); P. Appell, Les Fonctions Hypergëométriques de Plusieur Variables, (Gauthier-Villars, Paris, 1925); J. Kampé de Fériet, La fonction hypergëométrique,(Gauthier-Villars, Paris, 1937); H. Exton, Multiple Hypergeometric Functions and Applications, (Ellis Horwood, Chichester, 1976); H. Exton, Handbook of Hypergeometric Integrals, (Ellis Horwood, Chichester, 1978); H.M. Srivastava, P.W. Karlsson, Multiple Gaussian Hypergeometric Series, (Ellis Horwood, Chicester, 1985); M.J. Schlosser, in: Computer Algebra in Quantum Field Theory: Integration, Summation and Special Functions, C. Schneider, J. Blümlein, Eds., p. 305, (Springer, Wien, 2013), arXiv:1305.1966 [math.CA]

  71. L.J. Slater, Generalized Hypergeometric Functions (Cambridge University Press, Cambridge, 1966)

    MATH  Google Scholar 

  72. E.E. Kummer, Journal, für die reine und angew. Mathematik (Crelle) 15(39), 127 (1836)

    Google Scholar 

  73. B. Riemann, Abhandlungen der Mathematischen Classe der Königlichen Gesellschaft der Wissenschaften zu Göttingen 7, 3 (1857)

    Google Scholar 

  74. É. Goursat, Annales Scientifiques de l’École Normale Supérieure 10, 3 (1881)

    Google Scholar 

  75. K. Takeuchi, J. Fac. Sci, Univ. Tokyo, Sect 1A(24), 201 (1977)

    Google Scholar 

  76. E. Imamoglu, M. van Hoeij, J. Symbolic Comput. 83, 245 (2017)

    Google Scholar 

  77. M. van Hoeij, talk at this conference. https://indico.desy.de/indico/event/18291/

  78. F.G. Tricomi, Elliptische Funktionen, (Geest & Portig, Leipzig, 1948); übersetzt und bearbeitet von M. Krafft, E.T. Whittaker, G.N. Watson, A Course of Modern Analysis, (Cambridge University Press, Cambridge, 1996); reprint of the 4th edn (1927)

    Google Scholar 

  79. S. Herfurtner, Math. Ann. 291, 319 (1991)

    Google Scholar 

  80. H. Movasati, S. Reiter, Bull. Braz. Math Soc. 43, 423 (2012)

    Google Scholar 

  81. S.A. Abramov, M. Petkovšek, Proceedings of ISSAC 1994, 169–171, (ACM Press, New York, 1994)

    Google Scholar 

  82. M. van der Put, M.F. Singer, Galois Theory of Difference Equations, Lecturer Notes in Mathematics, vol. 1666 (Springer, Berlin, 1997)

    Google Scholar 

  83. T. Gehrmann, E. Remiddi, Comput. Phys. Commun. 141, 296 (2001), arXiv:0107173 [hep-ph/0107173]

  84. J. Ablinger, J. Blümlein, M. Round, C. Schneider, PoS (RADCOR), 010 (2017), arXiv:1712.08541 [hep-th]; arXiv:1809.07084 [hep-ph]

  85. G. ’t Hooft, M.J.G. Veltman, Nucl. Phys. B 153, 365 (1979)

    Google Scholar 

  86. J. Vollinga, S. Weinzierl, Comput. Phys. Commun. 167, 177 (2005), arXiv:0410259 [hep-ph/0410259]

  87. J. Blümlein, Comput. Phys. Commun. 133, 76 (2000), arXiv:0003100 [hep-ph/0003100]; J. Blümlein, S.O. Moch, Phys. Lett. B 614, 53 (2005), arXiv:0503188 [hep-ph/0503188]; J. Blümlein, Comput. Phys. Commun. 180, 22188 (2009), arXiv:0901.3106 [hep-ph]; J. Blümlein, Clay Math. Proc. 12, 167 (2010), arXiv:0901.0837 [math-ph]; A.V. Kotikov, V.N. Velizhanin, arXiv:0501274 hep-ph/0501274

  88. J. Serre, A Course in Arithmetic (Springer, Berlin, 1973)

    Book  Google Scholar 

  89. H. Cohen, F. Strömberg, Modular Forms, A Classical Approach, Graduate studies in mathematics, vol. 179 (AMS, Providence,RI, 2017); H. Cohen, Expansions at Cusps and Petersson Products in Pari/GP, contribution to this volume

    Google Scholar 

  90. F. Klein, R. Fricke, Vorlesungen über die Theorie der elliptischen Modulfunktionen, 1, 2, (Teubner, Leipzig, 1890, 1892); R. Fricke, Die elliptischen Funktionen und ihre Anwendungen, Vol. I–III. Vol. I and II (B.G. Teubner, Leipzig, 1916, 1922) reprinted by (Springer, Berlin, 2011); Vol. III, ed. by C. Adelmann, J. Elstrodt, E. Klimenko, (Springer, Berlin, 2012)

    Google Scholar 

  91. M. Koecher, A. Krieg, Elliptische Funktionen und Modulformen (Spriner, Berlin, 2007). 2. Auflage

    Google Scholar 

  92. H. Rademacher, Topics in Analytic Number Theory (Springer, Berlin, 1973)

    Chapter  Google Scholar 

  93. T.M. Apostol, Modular Functions and Dirichlet Series in Number Theory (Springer, Berlin, 1990)

    Chapter  Google Scholar 

  94. G. Köhler, Eta products and Theta Series Identities, (Springer, Berlin, 2011). Math. Scand. 66, 14 (1990)

    Google Scholar 

  95. K. Ono, The Web of Modularity: Arithmetic of the Coefficients of Modular Forms and \(q\)-series, CBMS Regional Conference Series in Mathematics, 102 (AMS, Providence, 2004)

    Google Scholar 

  96. F. Diamond, J. Shurman, A First Course in Modular Forms (Springer, Berlin, 2005)

    Google Scholar 

  97. K. Martin, Modular Forms, Lecture Notes (2016); U. Oklahoma, http://www2.math.ou.edu/~kmartin/mfs/

  98. H. Hida, Elementary Theory of \(L\)-Functions and Eisenstein Series (Cambridge University Press, Cambridge, 1993)

    Google Scholar 

  99. H. Iwaniec, Topics in Classical Automorphic Forms (AMS, Providence, 1997)

    Google Scholar 

  100. L.J.P. Kilford, Modular Forms, 2nd edn. (Imperial College Press, London, 2015)

    Google Scholar 

  101. A.W. Knapp, Elliptic Curves (Princeton University Press, Princeton, 1992)

    Google Scholar 

  102. M.I. Knopp, Modular Functions in Analytic Number Theory (Markham Publ. Co., Chicago, IL, 1970)

    Google Scholar 

  103. R.A. Rankin, Modular Forms and Modular Functions (Cambridge University Press, Cambridge, 1977)

    Google Scholar 

  104. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions (Princeton University Press, Princeton, 1971)

    Google Scholar 

  105. E. Hecke, Math. Annalen 97, 210 (1927); Kgl. Danske Vidensk. Selskab, Math.-fys. medd. 17, 1 (1940); Mathematische Werke, p. 789, (Vandenhoeck u. Ruprecht, Göttingen, 1997), 3. Auflage; J. Sturm, in Number theory, New York, 1984–1985, Lecture Notes in Math. 1240 (Springer, Berlin, 1987), p. 789; H. Petersson, Modulfunktionen und quadratische Formen (Springer, Berlin, 1982)

    Google Scholar 

  106. J.S. Milne, Modular Functions and Modular Forms (Elliptic Modular Curves) (2012), p. 138. http://www.jmilne.org/math/CourseNotes/mf.html

  107. B. Schoenenberg, Elliptic Modular Functions (Springer, Berlin, 1974)

    Google Scholar 

  108. T. Miyake, Modular Forms, 2nd edn. (Springer, Berlin, 2005)

    Google Scholar 

  109. A. Ogg, Modular Forms and Dirichlet Series (Benjamin, New York, 1969)

    Google Scholar 

  110. D. Zagier, Elliptic modular forms and their applications, in: The 1-2-3 of Modular Forms, Springer, Berlin, 2008

    MATH  Google Scholar 

  111. R. Dedekind, Journal für die reine und angewandte Mathematik (Crelle) 83, 265 (1877); in Gesammelte mathematische Werke, ed. R. Fricke, E. Noether, Ø. Ore, (Viehweg und Sohn, Braunschweig, 1930) XIV. Schreiben an Herrn Borchhardt über die Theorie der elliptischen Modulfunktionen, p. 174; Erläuterungen zu den Fragmenten XXVIII, p. 454 (p. 486), in B. Riemann, Gesammelte Mathematische Werke, Wissenschaftlicher Nachlaß und Nachträge, nach der Ausgabe von H. Weber und R. Dedekind neu herausgegeben von R. Narasimhan, (Springer, Berlin, 1990) und (Teubner, Leipzig, 1990)

    Google Scholar 

  112. G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers, 6th edn. (Oxford, Calendron Press, 2008)

    Google Scholar 

  113. SageMath version 7.5.1, Release Date:2017-01-15. http://www.sagemath.org/de/. W. Stein, The modular forms data base. http://wstein.org/Tables

  114. J.H. Lambert, Anlage zur Architectonic oder Theorie des Ersten und des Einfachen in der philosophischen und der mathematischen Erkenntniß, (Johann Friedrich Hartknoch, Riga, 1771), 2, §875, p. 506

    Google Scholar 

  115. B. Eisenstein, Mathematische Abhandlungen, (Berlin, G. Reimer, 1847), pp. 213—334; Journal für die reine und angewandte. Mathematik (Crelle) 35, 153 (1847)

    Google Scholar 

  116. S.J. Bloch, Higher Regulators, Algebraic K-Theory, and Zeta Functions of Elliptic Curves, CRM Monograph Series, (AMS, New York, 2000). The lectures were delivered in 1978; D. Zagier, Math. Ann. (1990) 613; A. Beilinson, A. Levin, Proceedings of Symposia in Pure Mathematics, 55, 126 (1994) part 2; A. Levin, Compositio Math. 106, 267 (1997); J. Wildeshaus, Realizations of Polylogarithms, Lect. Notes Math. 1650, (Springer, Berlin 1997); H. Gangl, D. Zagier, in The arithmetic and geometry of algebraic cycles, Banff, AB, 1998, NATO Science Series C, Mathematical and Physical Sciences, 548, 561 (Kluwer Academic Publishers, Dordrecht, 2000); A. Levin, G. Racinet, Towards multiple elliptic polylogarithms, arXiv:math/0703237; F. Brown, A. Levin, Multiple elliptic polylogarithms, arXiv:1110.6917 [math.NT]arXiv:1110.6917[math.NT]

  117. C.G.J. Jacobi, Gesammelte Werke, 7 Bände, Eds. K.W. Borchardt, A. Clebsch, K. Weierstraß, on order of the Prussian Academy of Sciences, (Reimer, Berlin, 1881–1891), 1,2 (1881/1882)

    Google Scholar 

  118. A. Erdélyi et al., Higher Transcendental Functions, vol. 2 (McGraw-Hill, New York, 1953)

    Google Scholar 

  119. L.M. Milne-Thomson, 17. Elliptic Integrals, in Handbook of Mathematical Functions, ed. by 10th, M. Abramowitz, I.A. Stegun, (NBS, Washington, 1972, p. p. printing)

    Google Scholar 

  120. A.M. Legendre, Traité des fonctions elliptiques et des intégrales eulériennes, 1, 2 (Paris, Imprimerie De Huzard-Courcier,1825-1826), ibid. Supplement, 3 (1828)

    Google Scholar 

  121. A.M. Legendre, Traité des fonctions elliptiques et des intégrales eulériennes, Supplement, (Paris, Imprimerie De Huzard-Courcier, 1828), 3, \(1^{\text{ er }}\) Suppement, p. 65, 70

    Google Scholar 

  122. C.G.J. Jacobi, Astronomische Nachrichten (Schumacher) 6, Nr. 127; and., [117], 1, 39 (1827)

    Google Scholar 

  123. J. Landen, Phil. Trans. 65, 283 (1775); C.F. Gauß, in Werke, herausgegeben von der Königlichen Gesellschaft der Wissenschaften zu Göttingen, (Dietrich, Göttingen, 1866); Arithmetisch geometrisches Mittel, 3, 361

    Google Scholar 

  124. A. Cayley, Phil. Trans R. Soc. Lond. 164, 379 (1874)

    Google Scholar 

  125. R.S. Maier, J. Ramanujan Math. Soc. 24, 1 (2009), arXiv:math/0611041

  126. J.M. Borwein, P.B. Borwein, Trans. Am. Math. Soc. No. 2, 691 (1991)

    Google Scholar 

  127. G.S. Joyce, J. Phys. A 31, 4105 (1998)

    Google Scholar 

  128. The on-line encyclopedia of integer sequences, founded by N.J.A. Sloane (1994). https://oeis.org/?language=german

  129. M.J.G. Veltman, Nucl. Phys. B 123, 89 (1977)

    Google Scholar 

  130. D.A. Ross, M.J.G. Veltman, Nucl. Phys. B 95, 135 (1975)

    Google Scholar 

  131. L. Avdeev, J. Fleischer, S. Mikhailov, O. Tarasov, Phys. Lett. B 336, 560 (1994). Erratum: [Phys. Lett. B 349, 597 (1995)], arXiv:9406363 [hep-ph/9406363]

  132. K.G. Chetyrkin, J.H. Kühn, M. Steinhauser, Phys. Lett. B 351, 331 (1995), arXiv:9502291 [hep-ph/9502291]

  133. R. Boughezal, J.B. Tausk, J.J. van der Bij, Nucl. Phys. B 713, 278 (2005), arXiv:0410216 [hep-ph/0410216]

  134. K.G. Chetyrkin, M. Faisst, J.H. Kühn, P. Maierhöfer, C. Sturm, Phys. Rev. Lett. 97, 102003 (2006), arXiv:0605201 [hep-ph/0605201]

  135. R. Boughezal, M. Czakon, Nucl. Phys. B 755, 221 (2006), arXiv:0606232 [hep-ph/0606232]

  136. E.W. Barnes, Q. J. Math. 41, 136 (1910); H. Mellin, Math. Ann. 68(3), 305 (1910)

    Google Scholar 

  137. J. Blümlein, S. Klein, C. Schneider, F. Stan, J. Symbolic Comput. 47, 1267 (2012), arXiv:1011.2656 [cs.SC]

  138. R.E. Cutkosky, J. Math. Phys. 1, 429 (1960); M.J.G. Veltman, Physica 29, 186 (1963); E. Remiddi, Helv. Phys. Acta 54, 364 (1982); E. Remiddi, Differential Equations and Dispersion Relations for Feynman Amplitudes, contribution to this volume; E. Remiddi, Generalised cuts and Wick Rotations, PoS (LL2018), 086

    Google Scholar 

Download references

Acknowledgements

I would like to thank J. Ablinger, A. De Freitas, M. van Hoeij, E. Imamoglu, P. Marquard, C.G. Raab, C.-S. Radu, and C. Schneider for collaboration in two projects and A. Behring, D. Broadhurst, H. Cohen, G. Köhler, P. Paule, E. Remiddi, M. Steinhauser, J.-A. Weil, S. Weinzierl and D. Zagier for discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Blümlein .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Blümlein, J. (2019). Iterative Non-iterative Integrals in Quantum Field Theory. In: Blümlein, J., Schneider, C., Paule, P. (eds) Elliptic Integrals, Elliptic Functions and Modular Forms in Quantum Field Theory. Texts & Monographs in Symbolic Computation. Springer, Cham. https://doi.org/10.1007/978-3-030-04480-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04480-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04479-4

  • Online ISBN: 978-3-030-04480-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics