Skip to main content

Silkworm Growth Monitoring in Second Stage -Instar- Using Artificial Vision Techniques

  • Conference paper
  • First Online:
Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II (AACC 2018)

Abstract

In the Department of Cauca (Colombia), there is evidence of low efficiency in the process of generating silk cocoons by small and medium producers due to the manual monitoring of worms natural growth; traditionally, a person without an advanced technical knowledge but with empirical experience has evaluated the appropriate feeding time based on the concentration of worms. This task becomes more expensive and inefficient when the production of worms increases. For this reason, we propose to improve the aforementioned process through the analysis of worm bed images in its second stage –instar-, by automatically determining the most suitable period for feeding using artificial intelligence techniques. The experiments showed promising results that will guide automation at low costs in the worm breeding industry for this region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pescio, F., Zunini, H., Basso, C.P., de Sesar, M., Frank, R.G., Pelicano, A.E., Vieites, C.M.: “Sericicultura: manual para la producción”, Buenos Aires, Inst. Nac. Tecnol. Ind. e Univ. Buenos Aires-Facultad Agron

    Google Scholar 

  2. Madihalli, P.D.B., Ittannavar, P.S.S.: Arduino based automated sericulture system 14(1) (2017)

    Google Scholar 

  3. Maya, A., Cardona, J.E., Álvarez, A., Elena, B., Arenas, A., González, D., Zapata Sierra, I., et al.: Aplicación de la Norma Gots a un proceso productivo: caso Corseda (2013)

    Google Scholar 

  4. Cifuentes Correa, C.A., Sohn, K.W.: Manual técnico de sericultura: cultivo de la morera y cria del gusano de seda en el trópico., no. Doc. 21309 CO-BAC, Bogotá (1998)

    Google Scholar 

  5. Unnikrishnan, R., Pantofaru, C., Hebert, M.: Toward objective evaluation of image segmentation algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 929–944 (2007)

    Article  Google Scholar 

  6. Estrada, F.J., Jepson, A.D.: Benchmarking image segmentation algorithms. Int. J. Comput. Vis. 85(2), 167–181 (2009)

    Article  Google Scholar 

  7. Maitra, M., Chatterjee, A.: A hybrid cooperative–comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst. Appl. 34(2), 1341–1350 (2008)

    Article  Google Scholar 

  8. Yüksel, M.E., Borlu, M.: Accurate segmentation of dermoscopic images by image thresholding based on type-2 fuzzy logic. IEEE Trans. Fuzzy Syst. 17(4), 976–982 (2009)

    Article  Google Scholar 

  9. Zeng, X.-Y., Chen, Y.-W., Nakao, Z., Lu, H.: Texture representation based on pattern map. Signal Process. 84(3), 589–599 (2004)

    Article  Google Scholar 

  10. Of, O.: Template-based automatic segmentation of drosophila mushroom bodies 113, 99–113 (2008)

    Google Scholar 

  11. Wang, X.-Y., Sun, Y.-F.: A color-and texture-based image segmentation algorithm. Mach. Graph. Vis. Int. J. 19(1), 3–18 (2010)

    MathSciNet  Google Scholar 

  12. He, R., Datta, S., Sajja, B.R., Narayana, P.A.: Generalized fuzzy clustering for segmentation of multi-spectral magnetic resonance images. Comput. Med. Imaging Graph. 32(5), 353–366 (2008)

    Article  Google Scholar 

  13. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  14. Bao, P., Zhang, L., Wu, X.: Canny edge detection enhancement by scale multiplication where 27(9), 1485–1490 (2005)

    Google Scholar 

  15. Christoudias, C.M., Georgescu, B., Meer, P.: Synergism in Low Level Vision, no. 1

    Google Scholar 

  16. Chung, K., Yang, W., Yan, W.: Efficient edge-preserving algorithm for color contrast enhancement with application to color image segmentation 19, 299–310 (2008)

    Google Scholar 

  17. Enrique, L., Ugarriza, G., Saber, E., Amuso, V.J.: Automatic image segmentation by dynamic region growth and multiresolution merging by (2007)

    Google Scholar 

  18. Peter, Z., Bousson, V., Bergot, C., Peyrin, F.: A constrained region growing approach based on watershed for the segmentation of low contrast structures in bone micro-CT images 41, 2358–2368 (2008)

    Google Scholar 

  19. Wang, X.-Y., Wang, T., Bu, J.: Color image segmentation using pixel wise support vector machine classification. Pattern Recognit. 44(4), 777–787 (2011)

    Article  Google Scholar 

  20. Long, J., Shelhamer, E., Darrell, T.: Fully Convolutional Networks for Semantic Segmentation

    Google Scholar 

  21. Bittel, S., Kaiser, V., Teichmann, M., Thoma, M.: Pixel-wise Segmentation of Street with Neural Networks, pp. 1–7 (2010)

    Google Scholar 

  22. Wu, C., Cheng, H., Li, S., Li, H., Chen, Y.: ApesNet : A Pixel-wise Efficient Segmentation Network (Invited Special Session Paper) (2016)

    Google Scholar 

  23. Paisitkriangkrai, S., Sherrah, J., Janney, P., Hengel, A.V.: Effective Semantic Pixel labelling with Convolutional Networks and Conditional Random Fields

    Google Scholar 

  24. Kiratiratanapruk, K., Watcharapinchai, N., Methasate, I., Sinthupinyo, W.: Silkworm eggs detection and classification using image analysis. In: 2014 International Computer Science and Engineering Con-ference (ICSEC), pp. 340–345 (2014)

    Google Scholar 

  25. Leelertyanon, I., Areekul, V.: The automatic measurement of silkworm growth rate and leaf’s area using image processing. In: 2002 IEEE International Conference on Industrial Technology IEEE ICIT 2002, vol. 1, pp. 242–245 (2002)

    Google Scholar 

  26. Adarsh, U., Shivayogappa, H.J., Navya, K.N., et al.: Automated smart sericulture system based on 6LoWPAN and image processing technique. In: 2016 International Conference on Computer Communication and Informatics (ICCCI), pp. 1–6 (2016)

    Google Scholar 

  27. Grisales-Muñoz, C.: Caracterización de tres unidades serícolas en los municipios de Piendamó y Morales, Cauca, (Tesis de pregrado), Universidad del Cauca, Popayán (2015)

    Google Scholar 

  28. Kiratiratanapruk, K., Sinthupinyo, W.: Silkworm egg image analysis using different color information for improving quality inspection. IEEE (2016)

    Google Scholar 

Download references

Acknowledgment

The authors acknowledge the company Quasar Tech SAS, which generated the necessary software and hardware to implement the monitoring system of the silkworm bed in its second instar and the Corporation for the Development of the Sericulture of Cauca (CORSEDA), which facilitated the space and qualified personnel to deploy the experiments carried out within the framework of the project “STRENGTHENING OF THE MARKET VERTICAL IN AGRIBUSINESS IN COMPANIES OF CLUSTER CREATIC”, financed by Colombian agencies as: MinTIC, COLCIENCIAS and the Government of Cauca.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilfred Fabian Rivera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suárez, L.J., López, Y.P., Rivera, W.F., Ledezma, A. (2019). Silkworm Growth Monitoring in Second Stage -Instar- Using Artificial Vision Techniques. In: Corrales, J., Angelov, P., Iglesias, J. (eds) Advances in Information and Communication Technologies for Adapting Agriculture to Climate Change II. AACC 2018. Advances in Intelligent Systems and Computing, vol 893. Springer, Cham. https://doi.org/10.1007/978-3-030-04447-3_4

Download citation

Publish with us

Policies and ethics