Short Plane Supports for Spatial Hypergraphs
- 1 Citations
- 618 Downloads
Abstract
A graph \(G=(V,E)\) is a support of a hypergraph \(H=(V,S)\) if every hyperedge induces a connected subgraph in G. Supports are used for certain types of hypergraph visualizations. In this paper we consider visualizing spatial hypergraphs, where each vertex has a fixed location in the plane. This is the case, e.g., when modeling set systems of geospatial locations as hypergraphs. By applying established aesthetic quality criteria we are interested in finding supports that yield plane straight-line drawings with minimum total edge length on the input point set V. We first show, from a theoretical point of view, that the problem is NP-hard already under rather mild conditions as well as a negative approximability results. Therefore, the main focus of the paper lies on practical heuristic algorithms as well as an exact, ILP-based approach for computing short plane supports. We report results from computational experiments that investigate the effect of requiring planarity and acyclicity on the resulting support length. Further, we evaluate the performance and trade-offs between solution quality and speed of several heuristics relative to each other and compared to optimal solutions.
Notes
Acknowledgments
This work started at Dagstuhl seminar 17332 “Scalable Set Visualizations”. The authors would like to thank Nathalie Henry Riche for providing the data for Fig. 2. TC was supported by the Netherlands Organisation for Scientific Research (NWO, 314.99.117). MvG received funding from the European Union’s Seventh Framework Programme (FP7/2007-2013) under ERC grant agreement n\(^{\text {o}}\) 319209 (project NEXUS 1492) and the German Research Foundation (DFG) within project B02 of SFB/Transregio 161. WM was partially supported by the Netherlands eScience Centre (NLeSC, 027.015.G02).
References
- 1.Akitaya, H.A., Löffler, M., Tóth, C.D.: Multi-colored spanning graphs. In: Hu, Y., Nöllenburg, M. (eds.) GD 2016. LNCS, vol. 9801, pp. 81–93. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-50106-2_7CrossRefGoogle Scholar
- 2.Alper, B., Henry Riche, N., Ramos, G., Czerwinski, M.: Design study of LineSets, a novel set visualization technique. IEEE Trans. Vis. Comput. Graph. 17(12), 2259–2267 (2011). https://doi.org/10.1109/TVCG.2011.186CrossRefGoogle Scholar
- 3.Alsallakh, B., Micallef, L., Aigner, W., Hauser, H., Miksch, S., Rodgers, P.: The state of the art of set visualization. Comput. Graph. Forum 35(1), 234–260 (2016). https://doi.org/10.1111/cgf.12722CrossRefGoogle Scholar
- 4.Bereg, S., Fleszar, K., Kindermann, P., Pupyrev, S., Spoerhase, J., Wolff, A.: Colored non-crossing euclidean steiner forest. In: Elbassioni, K., Makino, K. (eds.) ISAAC 2015. LNCS, vol. 9472, pp. 429–441. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-48971-0_37CrossRefGoogle Scholar
- 5.Bereg, S., Jiang, M., Yang, B., Zhu, B.: On the red/blue spanning tree problem. Theor. Comput. Sci. 412(23), 2459–2467 (2011). https://doi.org/10.1016/j.tcs.2010.10.038MathSciNetCrossRefzbMATHGoogle Scholar
- 6.Brandes, U., Cornelsen, S., Pampel, B., Sallaberry, A.: Path-based supports for hypergraphs. J. Discrete Algorithms 14, 248–261 (2012). https://doi.org/10.1016/j.jda.2011.12.009MathSciNetCrossRefzbMATHGoogle Scholar
- 7.Buchin, K., van Kreveld, M., Meijer, H., Speckmann, B., Verbeek, K.: On planar supports for hypergraphs. J. Graph Algorithms Appl. 15(4), 533–549 (2011). https://doi.org/10.7155/jgaa.00237MathSciNetCrossRefzbMATHGoogle Scholar
- 8.Castermans, T., van Garderen, M., Meulemans, W., Nöllenburg, M., Yuan, X.: Short plane supports for spatial hypergraphs. Computing Research Repository, arXiv:1808.09729 (2018)
- 9.Collins, C., Penn, G., Carpendale, S.: Bubble sets: revealing set relations with isocontours over existing visualizations. IEEE Trans. Vis. Comput. Graph. 15(6), 1009–1016 (2009). https://doi.org/10.1109/TVCG.2009.122CrossRefGoogle Scholar
- 10.Dinkla, K., van Kreveld, M., Speckmann, B., Westenberg, M.: Kelp diagrams: point set membership visualization. Comput. Graph. Forum 31(3pt1), 875–884 (2012). https://doi.org/10.1111/j.1467-8659.2012.03080.xCrossRefGoogle Scholar
- 11.Efrat, A., Hu, Y., Kobourov, S.G., Pupyrev, S.: MapSets: visualizing embedded and clustered graphs. J. Graph Algorithms Appl. 19(2), 571–593 (2015). https://doi.org/10.7155/jgaa.00364MathSciNetCrossRefzbMATHGoogle Scholar
- 12.van Goethem, A., Kostitsyna, I., van Kreveld, M., Meulemans, W., Sondag, M., Wulms, J.: The painter’s problem: covering a grid with colored connected polygons. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 492–505. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73915-1_38CrossRefGoogle Scholar
- 13.Hurtado, F., et al.: Colored spanning graphs for set visualization. Comput. Geom.: Theory Appl. 68, 262–276 (2018). https://doi.org/10.1016/j.comgeo.2017.06.006MathSciNetCrossRefzbMATHGoogle Scholar
- 14.Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. Graph Theory 11(3), 309–325 (1987). https://doi.org/10.1002/jgt.3190110306MathSciNetCrossRefzbMATHGoogle Scholar
- 15.Klemz, B., Mchedlidze, T., Nöllenburg, M.: Minimum tree supports for hypergraphs and low-concurrency euler diagrams. In: Ravi, R., Gørtz, I.L. (eds.) SWAT 2014. LNCS, vol. 8503, pp. 265–276. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08404-6_23CrossRefGoogle Scholar
- 16.Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Math. Program. 98(1–3), 385–414 (2003). https://doi.org/10.1007/s10107-003-0410-xMathSciNetCrossRefzbMATHGoogle Scholar
- 17.Lichtenstein, D.: Planar formulae and their uses. SIAM J. Comput. 11(2), 329–343 (1982). https://doi.org/10.1137/0211025MathSciNetCrossRefzbMATHGoogle Scholar
- 18.Meulemans, W., Henry Riche, N., Speckmann, B., Alper, B., Dwyer, T.: KelpFusion: a hybrid set visualization technique. IEEE Trans. Vis. Comput. Graph. 19(11), 1846–1858 (2013). https://doi.org/10.1109/TVCG.2013.76CrossRefGoogle Scholar
- 19.Purchase, H.: Metrics for graph drawing aesthetics. J. Vis. Lang. Comput. 13(5), 501–516 (2002). https://doi.org/10.1006/jvlc.2002.0232CrossRefGoogle Scholar
- 20.Tufte, E.: The Visual Display of Quantitative Information. Graphics Press, Cheshire (2001)Google Scholar