Advertisement

From Fetuses to Boys to Men: The Impact of Testosterone on Male Lifespan Development

  • John A. BarryEmail author
  • Rebecca Owens
Chapter

Abstract

This chapter examines the role of testosterone in the development of the physical and mental health of the male from prenatal development to adulthood. We will examine the biological pathways of testosterone and how these impact psychology (e.g. mental rotation ability) and psychopathology (e.g. autism). We explore the role of testosterone in the adult male, its relationship with traits associated with masculinity and assess whether it is fair to say that testosterone causes aggression in humans. We conclude that the view of testosterone in the social sciences needs to be refined and updated in order to recognise the importance of this sex hormone to the mental and physical health and wellbeing of males.

Keywords

Testosterone Mouse model Mental rotation Prenatal development Placebo 

References

  1. Ainsworth, S. E., & Maner, J. K. (2012). Sex begets violence: Mating motives, social dominance, and physical aggression in men. Journal of Personality and Social Psychology, 103(5), 819.CrossRefGoogle Scholar
  2. Aleman, A., Bronk, E., Kessels, R. P. C., Koppeschaar, H. P. F., & van Honk, J. (2004). A single administration of testosterone improves visuospatial ability in young women. Psychoneuroendocrinology, 29(5), 612–617.  https://doi.org/10.1016/s0306-4530(03)00089-1.CrossRefPubMedGoogle Scholar
  3. Alvergne, A., Faurie, C., & Raymond, M. (2009). Variation in testosterone levels and male reproductive effort: Insight from a polygynous human population. Hormones and Behavior, 56(5), 491–497.CrossRefGoogle Scholar
  4. Archer, J. (2006). Testosterone and human aggression: An evaluation of the challenge hypothesis. Neuroscience and Biobehavioral Reviews, 30(3), 319–345.CrossRefGoogle Scholar
  5. Baron-Cohen, S. (2002). The extreme male brain theory of autism. Trends in Cognitive Sciences, 6(6), 248–254.CrossRefGoogle Scholar
  6. Barry, J. A., Parekh, H. S. K., & Hardiman, P. J. (2013). Visual-spatial cognition in women with polycystic ovarian syndrome: The role of androgens. Human Reproduction, 28(10), 2832–2837.  https://doi.org/10.1093/humrep/det335.CrossRefPubMedGoogle Scholar
  7. Barry, J. A., Qu, F., & Hardiman, P. J. (2018). An exploration of the hypothesis that testosterone is implicated in the psychological functioning of women with polycystic ovary syndrome (PCOS). Medical Hypotheses, 110, 42–45.CrossRefGoogle Scholar
  8. Berni, T. R., Morgan, C. L., Berni, E. R., & Rees, D. A. (2018). Polycystic ovary syndrome is associated with adverse mental health and neurodevelopmental outcomes. The Journal of Clinical Endocrinology & Metabolism, 103(6), 2116–2125.CrossRefGoogle Scholar
  9. BliegeBird, R., Smith, E., Alvard, M., Chibnik, M., Cronk, L., Giordani, L., et al. (2005). Signaling theory, strategic interaction, and symbolic capital. Current Anthropology, 46(2), 221–248.CrossRefGoogle Scholar
  10. Cherrier, M. M., Aubin, S., & Higano, C. S. (2009). Cognitive and mood changes in men undergoing intermittent combined androgen blockade for non-metastatic prostate cancer. Psycho-Oncology, 18(3), 237–247.CrossRefGoogle Scholar
  11. Dabbs, J. M., Jr., Strong, R., & Milun, R. (1997). Exploring the mind of testosterone: A beeper study. Journal of Research in Personality, 31(4), 577–587.Google Scholar
  12. De Lorme, K. C., & Sisk, C. L. (2013). Pubertal testosterone programs context-appropriate agonistic behavior and associated neural activation patterns in male Syrian hamsters. Physiology & Behavior, 112, 1–7.CrossRefGoogle Scholar
  13. Diekhof, E. K., & Kraft, S. (2017). The association between endogenous testosterone level and behavioral flexibility in young men—Evidence from stimulus-outcome reversal learning. Hormones and Behavior, 89, 193–200.CrossRefGoogle Scholar
  14. Diekhof, E. K., Wittmer, S., & Reimers, L. (2014). Does competition really bring out the worst? Testosterone, social distance and inter-male competition shape parochial altruism in human males. PLoS One, 9(7), e98977.CrossRefGoogle Scholar
  15. Edelstein, R. S., van Anders, S. M., Chopik, W. J., Goldey, K. L., & Wardecker, B. M. (2014). Dyadic associations between testosterone and relationship quality in couples. Hormones and Behavior, 65(4), 401–407.CrossRefGoogle Scholar
  16. Eisenegger, C., Naef, M., Snozzi, R., Heinrichs, M., & Fehr, E. (2010). Prejudice and truth about the effect of testosterone on human bargaining behaviour. Nature, 463(7279), 356.CrossRefGoogle Scholar
  17. Ellis, L. (2018). Evolution, societal sexism, and universal average sex differences in cognition and behavior. In Oxford handbook of evolution, biology, and society. http://www.oxfordhandbooks.com/view/10.1093/oxfordhb/9780190299323.001.0001/oxfordhb-9780190299323-e-30.
  18. Farrelly, D., Owens, R., Elliott, H. R., Walden, H. R., & Wetherell, M. A. (2015). The effects of being in a “new relationship” on levels of testosterone in men. Evolutionary Psychology, 13(1), 147470491501300116.CrossRefGoogle Scholar
  19. Gettler, L. T., McDade, T. W., Feranil, A. B., & Kuzawa, C. W. (2011). Longitudinal evidence that fatherhood decreases testosterone in human males. Proceedings of the National Academy of Sciences, 108(39), 16194–16199.CrossRefGoogle Scholar
  20. Gettler, L. T., McKenna, J. J., McDade, T. W., Agustin, S. S., & Kuzawa, C. W. (2012). Does cosleeping contribute to lower testosterone levels in fathers? Evidence from the Philippines. PloS One, 7(9), e41559.CrossRefGoogle Scholar
  21. Goy, R. W., & McEwen, B. S. (1980). Sexual differentiation of the brain. Cambridge, MA: MIT Press.Google Scholar
  22. Hines, M. (2005). Brain gender. Oxford: Oxford University Press. Google Scholar
  23. Hines, M. (2017). Gonadal hormones and sexual differentiation of human brain and behavior.  https://doi.org/10.1016/B978-0-12-803592-4.00103-6.CrossRefGoogle Scholar
  24. Hines, M., Ahmed, S. F., & Hughes, I. (2003). Psychological outcomes and gender-related development in complete androgen insensitivity syndrome. Archives of Sexual Behavior, 32, 93–101.CrossRefGoogle Scholar
  25. Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60(6), 581.CrossRefGoogle Scholar
  26. Iervolino, A. C. (2003). Genetic and environmental influences on gender-role behaviour during the preschool years: A study of 3- and 4-year old twins. Ph.D. thesis, University of London.Google Scholar
  27. Imperato-McGinley, J., Guerrero, L., Gautier, T., & Peterson, R. E. (1974). Steroid 5α-reductase deficiency in man: An inherited form of male pseudohermaphroditism. Science, 186(4170), 1213–1215.CrossRefGoogle Scholar
  28. Kanazawa, S. (2000). Scientific discoveries as cultural displays: A further test of Miller’s courtship model. Evolution and Human Behavior, 21(5), 317–321.CrossRefGoogle Scholar
  29. Kanazawa, S. (2003). Why productivity fades with age: The crime–genius connection. Journal of Research in Personality, 37(4), 257–272.CrossRefGoogle Scholar
  30. Leggett, V., Jacobs, P., Nation, K., Scerif, G., & Bishop, D. V. (2010). Neurocognitive outcomes of individuals with a sex chromosome trisomy: XXX, XYY, or XXY: A systematic review. Developmental Medicine and Child Neurology, 52(2), 119–129.CrossRefGoogle Scholar
  31. Maccoby, E. E. (1988). Gender as a social category. Developmental Psychology, 24, 755–765.CrossRefGoogle Scholar
  32. Manning, J. T., & Fink, B. (2008). Digit ratio (2D:4D), dominance, reproductive success, asymmetry, and sociosexuality in the BBC Internet study. American Journal of Human Biology, 20(4), 451–461.CrossRefGoogle Scholar
  33. Mathews, G. A., Fane, B. A., Conway, G. S., Brook, C. G., & Hines, M. (2009). Personality and congenital adrenal hyperplasia: Possible effects of prenatal androgen exposure. Hormones and Behavior, 55(2), 285–291.CrossRefGoogle Scholar
  34. Mazur, A., & Booth, A. (1998). Testosterone and dominance in men. Behavioral and Brain Sciences, 21(3), 353–363.Google Scholar
  35. Mazur, A., & Michalek, J. (1998). Marriage, divorce, and male testosterone. Social Forces, 77(1), 315–330.CrossRefGoogle Scholar
  36. McCarthy, M. M., Arnold, A. P., Ball, G. F., Blaustein, J. D., & De Vries, G. J. (2012). Sex differences in the brain: The not so inconvenient truth. The Journal of Neuroscience, 32(7), 2241–2247.CrossRefGoogle Scholar
  37. McIntyre, M., Gangestad, S. W., Gray, P. B., Chapman, J. F., Burnham, T. C., O’rourke, M. T., et al. (2006). Romantic involvement often reduces men’s testosterone levels—But not always: The moderating role of extrapair sexual interest. Journal of Personality and Social Psychology, 91(4), 642.Google Scholar
  38. Miller, G. F. (2000). The mating mind: How sexual choice shaped the evolution of human nature. New York: Anchor books.Google Scholar
  39. Miller, K. E., Barnes, G. M., Sabo, D. F., Melnick, M. J., & Farrell, M. P. (2002). Anabolic-androgenic steroid use and other adolescent problem behaviors: Rethinking the male athlete assumption. Sociological Perspectives, 45(4), 467–489.CrossRefGoogle Scholar
  40. Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19(11), 1063–1066.CrossRefGoogle Scholar
  41. Nordenström, A., Servin, A., Bohlin, G., Larsson, A., & Wedell, A. (2002). Sex-typed toy play behavior correlates with the degree of prenatal androgen exposure assessed by CYP21 genotype in girls with congenital adrenal hyperplasia. The Journal of Clinical Endocrinology & Metabolism, 87(11), 5119–5124.CrossRefGoogle Scholar
  42. O’Connor, D. B., Archer, J., Hair, W. M., & Wu, F. C. (2002). Exogenous testosterone, aggression, and mood in eugonadal and hypogonadal men. Physiology & Behavior, 75(4), 557–566.CrossRefGoogle Scholar
  43. Overton, W. F. (2015). Processes, relations, and relational-developmental-systems. Handbook of Child Psychology and Developmental Science, 1, 2.Google Scholar
  44. Pasterski, V., Hindmarsh, P., Geffner, M., Brook, C., Brain, C., & Hines, M. (2007). Increased aggression and activity level in 3- to 11-year-old girls with congenital adrenal hyperplasia (CAH). Hormones and Behavior, 52(3), 368–374.CrossRefGoogle Scholar
  45. Perini, T., Ditzen, B., Fischbacher, S., & Ehlert, U. (2012). Testosterone and relationship quality across the transition to fatherhood. Biological Psychology, 90(3), 186–191.CrossRefGoogle Scholar
  46. Perry, P. J., Kutscher, E. C., Lund, B. C., Yates, W. R., Holman, T. L., & Demers, L. (2003). Measures of aggression and mood changes in male weightlifters with and without androgenic anabolic steroid use. Journal of Forensic Sciences, 48(3), 646–651.CrossRefGoogle Scholar
  47. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain and Cognition, 28(1), 39–58.CrossRefGoogle Scholar
  48. Printzlau, F., Wolstencroft, J., & Skuse, D. H. (2017). Cognitive, behavioral, and neural consequences of sex chromosome aneuploidy. Journal of Neuroscience Research, 95(1–2), 311–319.CrossRefGoogle Scholar
  49. Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19(11), 1067.CrossRefGoogle Scholar
  50. Reimers, L., & Diekhof, E. K. (2015). Testosterone is associated with cooperation during intergroup competition by enhancing parochial altruism. Frontiers in Neuroscience, 9, 183.CrossRefGoogle Scholar
  51. Roberts, G. (1998). Competitive altruism: From reciprocity to the handicap principle. Proceedings of the Royal Society of London B: Biological Sciences, 265(1394), 427–431.CrossRefGoogle Scholar
  52. Roberts, G. (2015). Human cooperation: The race to give. Current Biology, 25(10), R425–R427.CrossRefGoogle Scholar
  53. Sapolsky, R. M. (1991). Testicular function, social rank and personality among wild baboons. Psychoneuroendocrinology, 16(4), 281–293.CrossRefGoogle Scholar
  54. Seager, M., Sullivan, L., & Barry, J. (2014). Gender-related schemas and suicidality: Validation of the male and female traditional gender scripts questionnaires. New Male Studies, 3(3), 34–54.Google Scholar
  55. Seurinck, R., Vingerhoets, G., de Lange, F. P., & Achten, E. (2004). Does egocentric mental rotation elicit sex differences? Neuroimage, 23(4), 1440–1449.  https://doi.org/10.1016/j.neuroimage.2004.08.010.CrossRefPubMedGoogle Scholar
  56. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701–703.CrossRefGoogle Scholar
  57. Todd, B. K., Fischer, R. A., Di Costa, S., Roestorf, A., Harbour, K., Hardiman, P., et al. (2017). Sex differences in children’s toy preferences: A systematic review, meta‐regression, and meta‐analysis. Infant and Child Development, 27(2), e2064.Google Scholar
  58. Uchida, A., Bribiescas, R. G., Ellison, P. T., Kanamori, M., Ando, J., Hirose, N., et al. (2006). Age related variation of salivary testosterone values in healthy Japanese males. The Aging Male, 9(4), 207–213.CrossRefGoogle Scholar
  59. Vuoksimaa, E., Kaprio, J., Kremen, W. S., Hokkanen, L., Viken, R. J., Tuulio-Henriksson, A., et al. (2010). Having a male co-twin masculinizes mental rotation performance in females. Psychological Science, 21, 1069–1071.CrossRefGoogle Scholar
  60. Wibral, M., Dohmen, T., Klingmüller, D., Weber, B., & Falk, A. (2012). Testosterone administration reduces lying in men. PLoS One, 7(10), e46774.CrossRefGoogle Scholar
  61. Yang, E. Y., Lee, D. K., & Yang, J. H. (2018). Environmental endocrine disruptors and neurological disorders. Journal of the Korean Neurological Association, 36(3), 139–144.CrossRefGoogle Scholar

Copyright information

© The Author(s) 2019

Authors and Affiliations

  1. 1.University College LondonLondonUK
  2. 2.University of SunderlandSunderlandUK

Personalised recommendations