Skip to main content

DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection

  • 1126 Accesses

Part of the Lecture Notes in Electrical Engineering book series (LNEE,volume 539)

Abstract

Dip-pen lithography (DPL) technique has been employed to develop a new flexible biosensor realized on nylon with the aim to detect the activity of human topoisomerase. The sensor is constituted by an ordered array of a DNA substrate on flexible nylon supports that can be exploited as a drug screening platform for anticancer molecules. Here, we demonstrate a rapid protocol that permits to immobilize minute quantities of DNA oligonucleotides by DPL on nylon surfaces. Theoretical and experimental aspects have been investigated to successfully print DNA oligonucleotides by DPL on such a porous and irregular substrate.

Keywords

  • Flexible device
  • Molecular printing
  • Biosensor
  • Topoisomerase

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-030-04324-7_39
  • Chapter length: 8 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   219.00
Price excludes VAT (USA)
  • ISBN: 978-3-030-04324-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   279.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Segev-Bar, M., Haick, H.: Flexible sensors based on nanoparticles. ACS Nano 7, 8366–8378 (2013). https://doi.org/10.1021/nn402728g

    CrossRef  Google Scholar 

  2. Sun, Y., Wang, HH.: Electrodeposition of Pd nanoparticles on single-walled carbon nanotubes for flexible hydrogen sensors. Appl. Phys. Lett. 90, (2007).https://doi.org/10.1063/1.2742596

    CrossRef  Google Scholar 

  3. Farcau, C., Moreira, H., Viallet, B., Grisolia, J., Ciuculescu-pradines, D., Amiens, C., Ressier, L.: Monolayered wires of gold colloidal nanoparticles for high-sensitivity strain sensing. J. Phys. Chem. C 115, 14494–14499 (2011). https://doi.org/10.1021/jp202166s

    CrossRef  Google Scholar 

  4. Segev-Bar, M., Landman, A., Nir-Shapira, M., Shuster, G., Haick, H.: Tunable touch sensor and combined sensing platform: toward nanoparticle-based electronic skin. ACS Appl. Mater. Interfaces. 5, 5531–5541 (2013). https://doi.org/10.1021/am400757q

    CrossRef  Google Scholar 

  5. Martinez, A.W., Phillips, S.T., Whitesides, G.M., Carrilho, E.: Diagnostics for the developing world: micro fluidic paper-based analytical devices 82, 3–10 (2010). https://doi.org/10.1007/s10337-013-2413-y

    CrossRef  Google Scholar 

  6. Windmiller, J.R., Wang, J.: Wearable electrochemical sensors and biosensors: a review. Electroanalysis 25, 29–46 (2013). https://doi.org/10.1002/elan.201200349

    CrossRef  Google Scholar 

  7. Farahmand, E., Ibrahim, F., Hosseini, S., Rothan, H.A., Yusof, R., Koole, L.H., Djordjevic, I.: A novel approach for application of nylon membranes in the biosensing domain. Appl. Surf. Sci. 353, 1310–1319 (2015). https://doi.org/10.1016/j.apsusc.2015.07.004

    CrossRef  Google Scholar 

  8. Arrabito, G., Pignataro, B.: Solution processed micro- and nano-bioarrays for multiplexed biosensing. Anal. Chem. 84, 5450–5462 (2012). https://doi.org/10.1021/ac300621z

    CrossRef  Google Scholar 

  9. Khan, S., Lorenzelli, L., Dahiya, R.S.: Technologies for printing sensors and electronics over large flexible substrates: a review. IEEE Sens. J. 15, 3164–3185 (2015). https://doi.org/10.1109/JSEN.2014.2375203

    CrossRef  Google Scholar 

  10. Piner, R.D., Zhu, J., Xu, F., Hong, S., Mirkin, C.A.: “Dip-Pen” Nanolithography. Science 283, 661 LP-663 (1999)

    CrossRef  Google Scholar 

  11. He, Y., Ye, T., Su, M., Zhang, C., Ribbe, A.E., Jiang, W., Mao, C.: Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra. Nature 452, 198–201 (2008). https://doi.org/10.1038/nature06597

    CrossRef  Google Scholar 

  12. Wang, J.C.: DNA topoisomerases. Nat. Rev. Mol. Cell Biol. 582, 209–219 (2009). https://doi.org/10.1007/978-1-60761-340-4

    CrossRef  Google Scholar 

  13. Leppard, J.B., Champoux, J.J.: Human DNA topoisomerase I: relaxation, roles, and damage control. Chromosoma 114, 75–85 (2005). https://doi.org/10.1007/s00412-005-0345-5

    CrossRef  Google Scholar 

  14. Zuccaro, L., Tesauro, C., Kurkina, T., Fiorani, P., Yu, H.K., Knudsen, B.R., Kern, K., Desideri, A., Balasubramanian, K.: Real-time label-free direct electronic monitoring of topoisomerase enzyme binding kinetics on graphene. ACS Nano 9, 11166–11176 (2015). https://doi.org/10.1021/acsnano.5b05709

    CrossRef  Google Scholar 

  15. Wang, L., Arrabito, G.: Hybrid, multiplexed, functional DNA nanotechnology for bioanalysis. Analyst 140, 5821–5848 (2015). https://doi.org/10.1039/C5AN00861A

    CrossRef  Google Scholar 

  16. Anderson, D.M.: Imbibition of a liquid droplet on a deformable porous substrate. Phys. Fluids 17, 87104 (2005). https://doi.org/10.1063/1.2000247

    CrossRef  MATH  Google Scholar 

  17. Arrabito, G., Reisewitz, S., Dehmelt, L., Bastiaens, P.I., Pignataro, B., Schroeder, H., Niemeyer, C.M.: Biochips for cell biology by combined dip-pen nanolithography and DNA-directed protein immobilization. Small 9, 4243–4249 (2013). https://doi.org/10.1002/smll.201300941

    CrossRef  Google Scholar 

  18. Na, G.C.: Interaction of calf skin collagen with glycerol: linked function analysis. Biochemistry 25, 967–973 (1986). https://doi.org/10.1021/bi00353a004

    CrossRef  Google Scholar 

  19. Andersen, A.H., Gocke, E., Bonven, B.J., Nielsen, O.F., Westergaard, O.: Topoisomerase I has a strong binding preference for a conserved hexadecameric sequence in the promotor region of the rRNA gene from Tetrahymena pyriformis. Nucleic Acids Res. 13, 1543–1557 (1985). https://doi.org/10.1093/nar/13.5.1543

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Pignataro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Verify currency and authenticity via CrossMark

Cite this paper

Ferrara, V. et al. (2019). DNA-Based Biosensor on Flexible Nylon Substrate by Dip-Pen Lithography for Topoisomerase Detection. In: , et al. Sensors. CNS 2018. Lecture Notes in Electrical Engineering, vol 539. Springer, Cham. https://doi.org/10.1007/978-3-030-04324-7_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04324-7_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04323-0

  • Online ISBN: 978-3-030-04324-7

  • eBook Packages: EngineeringEngineering (R0)