Skip to main content

Discrete Fourier Transforms

  • Chapter
  • First Online:

Part of the book series: Applied and Numerical Harmonic Analysis ((ANHA))

Abstract

This chapter deals with the discrete Fourier transform (DFT). In Sect. 3.1, we show that numerical realizations of Fourier methods, such as the computation of Fourier coefficients, Fourier transforms or trigonometric interpolation, lead to the DFT. We also present barycentric formulas for interpolating trigonometric polynomials. In Sect. 3.2, we study the basic properties of the Fourier matrix and of the DFT. In particular, we consider the eigenvalues of the Fourier matrix with their multiplicities. Further, we present the intimate relations between cyclic convolutions and the DFT. In Sect. 3.3, we show that cyclic convolutions and circulant matrices are closely related and that circulant matrices can be diagonalized by the Fourier matrix. Section 3.4 presents the properties of Kronecker products and stride permutations, which we will need later in Chap. 5 for the factorization of a Fourier matrix. We show that block circulant matrices can be diagonalized by Kronecker products of Fourier matrices. Finally, Sect. 3.5 addresses real versions of the DFT, such as the discrete cosine transform (DCT) and the discrete sine transform (DST). These linear transforms are generated by orthogonal matrices.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. 23, 90–93 (1974)

    Article  MathSciNet  Google Scholar 

  2. T.M. Apostol, Introduction to Analytic Number Theory (Springer, New York, 1976)

    MATH  Google Scholar 

  3. A. Arico, S. Serra-Capizzano, M. Tasche, Fast and numerically stable algorithms for discrete Hartley transforms and applications to preconditioning. Commun. Inf. Syst. 5(1), 21–68 (2005)

    MathSciNet  MATH  Google Scholar 

  4. J.-P. Berrut, L.N. Trefethen, Barycentric Lagrange interpolation. SIAM Rev. 46(3), 501–517 (2004)

    Article  MathSciNet  Google Scholar 

  5. R.N. Bracewell, The Hartley Transform (Clarendon Press/Oxford University Press, New York, 1986)

    MATH  Google Scholar 

  6. W.L. Briggs, V.E. Henson, The DFT. An Owner’s Manual for the Discrete Fourier Transform (SIAM, Philadelphia, 1995)

    Google Scholar 

  7. P.J. Davis, Circulant Matrices (Wiley, New York, 1979)

    MATH  Google Scholar 

  8. M.T. Heideman, D.H. Johnson, C.S. Burrus, Gauss and the history of the fast Fourier transform. Arch. Hist. Exact Sci. 34(3), 265–277 (1985)

    Article  MathSciNet  Google Scholar 

  9. P. Henrici, Barycentric formulas for interpolating trigonometric polynomials and their conjugates. Numer. Math. 33(2), 225–234 (1979)

    Article  MathSciNet  Google Scholar 

  10. R.A. Horn, C.R. Johnson, Matrix Analysis, 2nd edn. (Cambridge University Press, Cambridge, 2013)

    MATH  Google Scholar 

  11. J.H. McClellan, T.W. Parks, Eigenvalue and eigenvector decomposition of the discrete Fourier transform. IEEE Trans. Audio Electroacoust. 20(1), 66–74 (1972)

    Article  MathSciNet  Google Scholar 

  12. P. Morton, On the eigenvectors of Schur’s matrix. J. Number Theory 12(1), 122–127 (1980)

    Article  MathSciNet  Google Scholar 

  13. K.R. Rao, P. Yip, Discrete Cosine Transform: Algorithms, Advantages, Applications (Academic, Boston, 1990)

    Book  Google Scholar 

  14. C. Runge, H. König, Vorlesungen über Numerisches Rechnen (Springer, Berlin, 1924)

    Book  Google Scholar 

  15. G. Strang, The discrete cosine transform. SIAM Rev. 41(1), 135–147 (1999)

    Article  MathSciNet  Google Scholar 

  16. L.N. Trefethen, Approximation Theory and Approximation Practice (SIAM, Philadelphia, 2013)

    MATH  Google Scholar 

  17. Z.D. Wang, Fast algorithms for the discrete W transform and the discrete Fourier transform. IEEE Trans. Acoust. Speech Signal Process. 32(4), 803–816 (1984)

    Article  MathSciNet  Google Scholar 

  18. M.V. Wickerhauser, Adapted Wavelet Analysis from Theory to Software (A K Peters, Wellesley, 1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Plonka, G., Potts, D., Steidl, G., Tasche, M. (2018). Discrete Fourier Transforms. In: Numerical Fourier Analysis. Applied and Numerical Harmonic Analysis. Birkhäuser, Cham. https://doi.org/10.1007/978-3-030-04306-3_3

Download citation

Publish with us

Policies and ethics