Skip to main content

Probabilistic Graphs for Sensor Data-Driven Modelling of Power Systems at Scale

  • Conference paper
  • First Online:
Data Analytics for Renewable Energy Integration. Technologies, Systems and Society (DARE 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11325))

Abstract

The growing complexity of the power grid, driven by increasing share of distributed energy resources and by massive deployment of intelligent internet-connected devices, requires new modelling tools for planning and operation. Physics-based state estimation models currently used for data filtering, prediction and anomaly detection are hard to maintain and adapt to the ever-changing complex dynamics of the power system. A data-driven approach based on probabilistic graphs is proposed, where custom non-linear, localised models of the joint density of subset of system variables can be combined to model arbitrarily large and complex systems. The graphical model allows to naturally embed domain knowledge in the form of variables dependency structure or local quantitative relationships. A specific instance where neural-network models are used to represent the local joint densities is proposed, although the methodology generalises to other model classes. Accuracy and scalability are evaluated on a large-scale data set representative of the European transmission grid.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: Proceedings of the 12th USENIX Symposium on Operating Systems Design and Implementation (OSDI) (2016)

    Google Scholar 

  2. Abur, A., Exposito, A.G.: Detecting multiple solutions in state estimation in the presence of current magnitude measurements. IEEE Trans. Power Syst. 12(1), 370–375 (1997). https://doi.org/10.1109/59.575721

    Article  Google Scholar 

  3. Abur, A., Exposito, G.A.: Power System State Estimation: Theory and Implementation. CRC Press, Boca Raton (2004)

    Book  Google Scholar 

  4. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  5. Collier, S.E.: The emerging enernet: convergence of the smart grid with the Internet of Things. IEEE Ind. Appl. Mag. 23(2) (2017)

    Article  Google Scholar 

  6. Cosovic, M., Vukobratovic, D.: Distributed Gauss-Newton method for AC state estimation: a belief propagation approach. In: IEEE International Conference on Smart Grid Communications (SmartGridComm) (2016)

    Google Scholar 

  7. Cosovic, M., Vukobratovic, D.: State estimation in electric power systems using belief propagation: an extended DC model. In: IEEE International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (2016)

    Google Scholar 

  8. Fiedler, M.: Laplacian of graphs and algebraic connectivity” and combinatorics and graph theory. 25(1), 57–70. Banach Center Publications (1989)

    Google Scholar 

  9. Frey, B.J., Jojic, N.: A comparison of algorithms for inference and learning in probabilistic graphical models. IEEE Trans. Pattern Anal. Mach. Intell. 27(9), 1392–1416 (2005)

    Article  Google Scholar 

  10. Fusco, F., Thirupathi, S., Gormally, R.: Power systems data fusion based on belief propagation. In: Proceedings of the IEEE PES Innovative Smart Grid Technologies (ISGT) Conference Europe (2017)

    Google Scholar 

  11. Honkela, A., Valpola, H.: Unsupervised variational Bayesian learning of nonlinear models. In: Proceedings of the Advances in Neural Information Processing Systems (NIPS) 17 (2004)

    Google Scholar 

  12. Hu, Y., Kuh, A., Kavcic, A., Yang, T.: A belief propagation based power distribution system state estimator. IEEE Comput. Intell. Mag. 6, 36–46 (2011)

    Article  Google Scholar 

  13. Jensen, T.V., Pinson, P.: Re-Europe and a large-scale dataset for modeling a highly renewable european electricity system. Sci. Data 4, 170–175 (2017)

    Article  Google Scholar 

  14. Josz, C., Fliscounakis, S., Maeght, J., Panciatici, P.: AC power flow data in MATPOWER and QCQP format: iTesla and RTE snapshots and and PEGASE. arXiv:1603.01533 (2016)

  15. Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: Proceedings of the Sixth International Conference on Learning Representations (ICLR) (2014)

    Google Scholar 

  16. Koller, D., Friedman, N.: Probabilistic Graphical Models. MIT Press, Cambridge (2009)

    MATH  Google Scholar 

  17. Luttinen, J., Llin, A.: Variational Gaussian-process factor analysis for modeling spatio-temporal data. In: Advances in Neural Information Processing Systems (NIPS) 22 (2009)

    Google Scholar 

  18. Nguyen, M.H., De la Torre, F.: Robust kernel principal component analysis. In: Advances in Neural Information Processing Systems (NIPS) 22 (2009)

    Google Scholar 

  19. Sanguinetti, G., Lawrence, N.D.: Missing data in Kernel PCA. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) ECML 2006. LNCS (LNAI), vol. 4212, pp. 751–758. Springer, Heidelberg (2006). https://doi.org/10.1007/11871842_76

    Chapter  Google Scholar 

  20. Scholz, M., Kaplan, F., Guy, C.L., Kopka, J., Selbig, J.: Gene expression non-linear PCA : a missing data approach. Bioinformatics 21(20), 3887–3895 (2005). https://doi.org/10.1093/bioinformatics/bti634

    Article  Google Scholar 

  21. Zimmerman, R.D., Murillo-Sánchez, C.E., Thomas, R.J.: Matpower: steady-state operations and planning and analysis tools for power systems research and education. IEEE Trans. Power Syst. 26(1), 12–19 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This research has received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 731232). The author would like to thank Sean McKenna and Bradley Eck, from IBM Research Ireland, for pointing to the data set used in this research, and Michele Berlingherio, from IBM Research Ireland, for providing excellent feedback on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesco Fusco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fusco, F. (2018). Probabilistic Graphs for Sensor Data-Driven Modelling of Power Systems at Scale. In: Woon, W., Aung, Z., Catalina Feliú, A., Madnick, S. (eds) Data Analytics for Renewable Energy Integration. Technologies, Systems and Society. DARE 2018. Lecture Notes in Computer Science(), vol 11325. Springer, Cham. https://doi.org/10.1007/978-3-030-04303-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04303-2_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04302-5

  • Online ISBN: 978-3-030-04303-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics