Skip to main content

Robust Unit Commitment Applying Information Gap Decision Theory and Taguchi Orthogonal Array Technique

  • Chapter
  • First Online:
Robust Optimal Planning and Operation of Electrical Energy Systems

Abstract

The purpose of this chapter is investigating the unit commitment problem (UCP) in the presence of renewable energy sources (RESs), energy storage systems (ESSs), and modeling the uncertainties arising in this regard. To achieve this goal, the following subjects are presented in detail. The classic UC formulations, the uncertainties’ impacts on this problem, and the new research efforts in this regard are addressed. Also, the existing optimization methods applied to solve the UCP such as robust optimization (RO), information gap decision theory (IGDT), and Taguchi orthogonal array technique (TOAT) as well as their advantages and drawbacks are described in the next section. Also, the application techniques for modeling the renewable energy sources and energy storage systems are detailed. Various models of UC problem such as thermal power plants and thermal power plants combined with RESs and ESSs considering the most important uncertainties in the inactive networks are presented. The proposed models have been tested on standard case of IEEE, 10 units, and the results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shahbazitabar, M., & Abdi, H. (2017). A solution to the unit commitment problem applying a hierarchical combination algorithm. Journal of Energy Management and Technology, 1(2), 12–19.

    Google Scholar 

  2. Saravanan, B., et al. (2013). A solution to the unit commitment problem—A review. Frontiers in Energy, 7(2), 223–236.

    Article  Google Scholar 

  3. Tahanan, M., et al., (2014). Large-scale unit commitment under uncertainty: A literature survey. Pisa, IT: UniversitĂ  di Pisa.

    Google Scholar 

  4. Abdi, H., Moradi, A., & Saleh, S. (2015). Optimal unit commitment of renewable energy sources in the micro-grids with storage devices. Journal of Intelligent & Fuzzy Systems, 28(2), 537–546.

    Google Scholar 

  5. Zheng, Q. P., Wang, J., & Liu, A. L. (2015). Stochastic optimization for unit commitment—A review. IEEE Transactions on Power Systems, 30(4), 1913–1924.

    Article  Google Scholar 

  6. Shi, J., & Oren, S. S. (2018). Stochastic unit commitment with topology control recourse for power systems with large-scale renewable integration. IEEE Transactions on Power Systems, 33(3), 3315–3324.

    Article  Google Scholar 

  7. Blanco, I., & Morales, J. M. (2017). An efficient robust solution to the two-stage stochastic unit commitment problem. IEEE Transactions on Power Systems, 32(6), 4477–4488.

    Article  Google Scholar 

  8. Bakirtzis, E. A., et al. (2018). Storage management by rolling stochastic unit commitment for high renewable energy penetration. Electric Power Systems Research, 158, 240–249.

    Article  Google Scholar 

  9. Pozo, D., Contreras, J., & Sauma, E. E. (2014). Unit commitment with ideal and generic energy storage units. IEEE Transactions on Power Systems, 29(6), 2974–2984.

    Article  Google Scholar 

  10. Alizadeh, M. I., Moghaddam, M. P., & Amjady, N. (2018). Multistage multiresolution robust unit commitment with nondeterministic flexible ramp considering load and wind variabilities. IEEE Transactions on Sustainable Energy, 9(2), 872–883.

    Article  Google Scholar 

  11. Zhou, M., et al. (2018). Multi-objective unit commitment under hybrid uncertainties: A data-driven approach. In Networking, Sensing and Control (ICNSC), 2018 IEEE 15th International Conference on, IEEE.

    Google Scholar 

  12. Aghaei, J., et al. (2017). Optimal robust unit commitment of CHP plants in electricity markets using information gap decision theory. IEEE Transactions on Smart Grid, 8(5), 2296–2304.

    Article  Google Scholar 

  13. Jiang, R., Wang, J., & Guan, Y. (2012). Robust unit commitment with wind power and pumped storage hydro. IEEE Transactions on Power Systems, 27(2), 800.

    Article  Google Scholar 

  14. Zhao, C., et al. (2013). Multi-stage robust unit commitment considering wind and demand response uncertainties. IEEE Transactions on Power Systems, 28(3), 2708–2717.

    Article  Google Scholar 

  15. Abujarad, S. Y., Mustafa, M., & Jamian, J. (2017). Recent approaches of unit commitment in the presence of intermittent renewable energy resources: A review. Renewable and Sustainable Energy Reviews, 70, 215–223.

    Article  Google Scholar 

  16. Hosseini, S. H., Khodaei, A., & Aminifar, F. (2007). A novel straightforward unit commitment method for large-scale power systems. IEEE Transactions on Power Systems, 22(4), 2134–2143.

    Article  Google Scholar 

  17. Shahbazitabar, M., & Abdi, H. (2018). A novel priority-based stochastic unit commitment considering renewable energy sources and parking lot cooperation. Energy. https://doi.org/10.1016/j.energy.2018.07.025.

    Article  Google Scholar 

  18. Othman, M., et al. (2015). Solving unit commitment problem using multi-agent evolutionary programming incorporating priority list. Arabian Journal for Science and Engineering, 40(11), 3247–3261.

    Article  Google Scholar 

  19. Sen, S., & Kothari, D. P. (1998). Optimal thermal generating unit commitment: A review. Electrical Power & Energy Systems, 20(7), 443–451.

    Article  Google Scholar 

  20. Sheble, G. B., & Fahd, G. N. (1994). Unit commitment literature synopsis. IEEE Transactions on Power Systems, 9(1), 128–135.

    Article  Google Scholar 

  21. Saber, A., et al. (2007). Unit commitment computation by fuzzy adaptive particle swarm optimisation. IET Generation, Transmission & Distribution, 1(3), 456–465.

    Article  MathSciNet  Google Scholar 

  22. Chandrasekaran, K., et al. (2012). Thermal unit commitment using binary/real coded artificial bee colony algorithm. Electric Power Systems Research, 84(1), 109–119.

    Article  Google Scholar 

  23. Dieu, V. N., & Ongsakul, W. (2008). Ramp rate constrained unit commitment by improved priority list and augmented Lagrange Hopfield network. Electric Power Systems Research, 78(3), 291–301.

    Article  Google Scholar 

  24. Zhu, J. (2015). Optimization of power system operation (Vol. 47). New Jersey, USA: John Wiley & Sons, IEEE Press.

    Google Scholar 

  25. Soroudi, A., & Amraee, T. (2013). Decision making under uncertainty in energy systems: State of the art. Renewable and Sustainable Energy Reviews, 28, 376–384.

    Article  Google Scholar 

  26. Goldberg, D. E., & Holland, J. H. (1988). Genetic algorithms and machine learning. Machine Learning, 3(2), 95–99.

    Article  Google Scholar 

  27. Ben-Haim, Y. (2006). Info-gap decision theory: Decisions under severe uncertainty. Great Britain: Elsevier.

    Chapter  Google Scholar 

  28. Hong, Y.-Y., Lin, F.-J., & Yu, T.-H. (2016). Taguchi method-based probabilistic load flow studies considering uncertain renewables and loads. IET Renewable Power Generation, 10(2), 221–227.

    Article  Google Scholar 

  29. Kazarlis, S. A., Bakirtzis, A., & Petridis, V. (1996). A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems, 11(1), 83–92.

    Article  Google Scholar 

  30. https://www.york.ac.uk/depts/maths/tables/orthogonal.htm

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamdi Abdi .

Editor information

Editors and Affiliations

Appendices

Appendices

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Nikzad, H.R., Abdi, H., Abbasi, S. (2019). Robust Unit Commitment Applying Information Gap Decision Theory and Taguchi Orthogonal Array Technique. In: Mohammadi-ivatloo, B., Nazari-Heris, M. (eds) Robust Optimal Planning and Operation of Electrical Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-04296-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04296-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04295-0

  • Online ISBN: 978-3-030-04296-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics