United Nations Environment Programme: Buildings and climate change: summary for decision makers (2008)
Google Scholar
United Nations Environment Programme: Common carbon metric for measuring energy use and reporting greenhouse gas emissions from building operations (2009)
Google Scholar
Gustavsson, L., Joelsson, A.: Life cycle primary energy analysis of residential buildings. Energy Build. 42(2), 210–220 (2010). https://doi.org/10.1016/j.enbuild.2009.08.017
CrossRef
Google Scholar
Liljenström, C., Malmqvist, T., Erlandsson, M., et al.: Byggandets klimatpåverkan: Livscykelberäkning av klimatpåverkan och energianvändning för ett nyproducerat energieffektivt flerbostadshus i betong (2015)
Google Scholar
Chastas, P., Theodosiou, T., Bikas, D.: Embodied energy in residential buildings-towards the nearly zero energy building: a literature review. Build Environ. (2016). https://doi.org/10.1016/j.buildenv.2016.05.040
Dixit, M.K., Fernández-Solís, J.L., Lavy, S., Culp, C.H.: Identification of parameters for embodied energy measurement: a literature review. Energy Build. 42(8), 1238–1247 (2010). https://doi.org/10.1016/j.enbuild.2010.02.016
CrossRef
Google Scholar
Ding, G.K.C.: Sustainable construction—the role of environmental assessment tools. J. Environ. Manag. 86(3), 451–464 (2008). https://doi.org/10.1016/j.jenvman.2006.12.025
CrossRef
Google Scholar
Chau, C., Leung, T., Ng, W.: A review on life cycle assessment, life cycle energy assessment and life cycle carbon emissions assessment on buildings. Appl. Energy 143, 395–413 (2015). https://doi.org/10.1016/j.apenergy.2015.08.093
CrossRef
Google Scholar
Giesekam, J., Barrett, J., Taylor, P., Owen, A.: The greenhouse gas emissions and mitigation options for materials used in UK construction. Energy Build. 78, 202–214 (2014). https://doi.org/10.1016/j.enbuild.2014.04.035
CrossRef
Google Scholar
Ibn-Mohammed, T., Greenough, R., Taylor, S., Ozawa-Meida, L., Acquaye, A.: Operational vs. embodied emissions in buildings—a review of current trends. Energy Build. 66, 232–245 (2013). https://doi.org/10.1016/j.enbuild.2013.07.026
Shadram, F., Johansson, T.D., Lu, W., Schade, J., Olofsson, T.: An integrated BIM-based framework for minimizing embodied energy during building design. Energy Build. 128, 592–604 (2016). https://doi.org/10.1016/j.enbuild.2016.07.007
CrossRef
Google Scholar
Shadram, F., Mukkavaara, J.: An Integrated BIM-based framework for the optimization of the trade-off between embodied and operational energy. Energy Build. 2018(158), 1189–1205 (2017). https://doi.org/10.1016/j.enbuild.2017.11.017
CrossRef
Google Scholar
Hammond, G., Jones, C.: Inventory of Carbon & Energy (ICE) Version 2.0, Sustainable Energy Research Team (SERT), Department of Mechanical Engineering, University of Bath UK (2012)
Google Scholar
Vattenfall: Origin of electricity in Sweden and its environmental impact for 2016. https://www.vattenfall.se/elavtal/energikallor/elens-ursprung/. Accessed 25 Dec 2017
Swedish district heating association: District heating local environmental values for 2015. http://www.svenskfjarrvarme.se/In-English/District-Heating-in-Sweden/. Accessed 25 Dec 2017
Construction elements and solutions. https://www.isover.se/. Accessed 25 Dec 2017
Boverket: Swedish national board of housing, building and planning. Regulations and general advice on accessibility, housing design, room height, operating space, fire protection, hygiene, health and environment, noise protection, safety in use and energy conservation (2016). http://www.boverket.se/contentassets/a9a584aa0e564c8998d079d752f6b76d/konsoliderad_bbr_2011-6.pdf. Accessed 25 Dec 2017
Sveby: Standards for energy in buildings. Input data for calculation of building’s energy use (2012). http://www.sveby.org/wp-content/uploads/2012/10/Sveby_Brukarindata_bostader_version_1.0.pdf. Accessed 25 Dec 2017