Dieter, G.E.: Engineering Design: A Materials and Processing Approach, 1st edn. Mc-Graw-Hill, New York (1983)
Google Scholar
Crane, F.A.A., Charles, J.A.: Selection and Use of Engineering Materials, 1st edn. Butterworths, London (1984)
Google Scholar
Ashby, M.F.: Materials Selection in Mechanical Design, 3rd edn. Butterworth-Heinemann, Oxford (2005)
Google Scholar
Granta Design Ltd. CES Selector, version 15.10.8. Cambridge (2016)
Google Scholar
Chatterjee, P., Chakraborty, S.: Material selection using preferential ranking methods. Mater. Des. 35, 384–393 (2012)
CrossRef
Google Scholar
Jahan, A., Edwards, K.L.: VIKOR method for material selection problems with interval numbers and target-based criteria. Mater. Des. 47, 759–765 (2013)
CrossRef
Google Scholar
Tzeng, G.-H., Huang, J.-J.: Multiple Attribute Decision Making – Methods and Applications, 1st edn. CRC Press, Boca Raton (2011)
MATH
Google Scholar
Kaspar, J., Vielhaber, M.: Cross-component systematic approach for lightweight and mate-rial-oriented design. In: DS 85-1: Proceedings of Nord Design, vol. 1, 332–341 (2016)
Google Scholar
Kaspar, J., Baehre, D., Vielhaber, M.: Material selection based on a product and production engineering integration framework. Procedia CIRP 50, 2–7 (2016)
CrossRef
Google Scholar
Choudry, S.A., Müller, S., Alber, U., Riedel, F., Landgrebe, D.: A multidimensional assessment and selection methodology: optimized decision-making of joining technologies in automobile body development. Procedia Manufact. 21, 281–288 (2018)
CrossRef
Google Scholar
Riedel, F.: Selection of joining technologies for the car body manufacturing depending on energy and resource efficiency. Automotive Engineering Congress, Nürnberg (2013)
Google Scholar
Reinhart, G., Mosandl, T., Gartner, J.: Fügeverfahren für die marktnahe Produktion. wt. Werkstatttechnik online 91(8), 151–162 (2001)
Google Scholar
Prüß, H., Stechert C., Vietor, T.: Methodik zur Auswahl von Fügetechnologien in Multimaterialsystemen. In: Krause, D., Paetzold, K., Wartzack, S. (eds.) Design for X: Beiträge zum 21. DfX-Symposium, pp. 131–142. TuTech Verlag, Hamburg (2010)
Google Scholar
VDMA 34160:2006-06. Forecasting model for lifecycle costs of machines and plants. Beuth, Berlin (2006)
Google Scholar
Esawi, A.M.K., Ashby, M.F.: Computer-based selection of joining processes: methods, software and case studies. Mater. Des. 25, 555–564 (2004)
CrossRef
Google Scholar
Choudry, S.A., Sandmann, S., Landgrebe, D.: A methodical approach for an economic assessment of joining technologies under risk – optimized decision-making in automobile body development. Procedia CIRP 69, 31–36 (2018)
CrossRef
Google Scholar
EN ISO 14040:2006-10, Environmental management - life cycle assessment - principles and framework, Beuth Verlag, Berlin (2009)
Google Scholar
Boothroyd, G.: Product design for manufacture and assembly. Comput. Aided Des. 26, 505–520 (1994)
CrossRef
Google Scholar
Kaspar, J., Choudry, S.A., Vielhaber, M.: Concurrent selection of material and joining technology – holistically relevant aspects and its mutual interrelations with regard to an affordable and viable lightweight engineering. Procedia CIRP 72, 780–785 (2018)
CrossRef
Google Scholar
Kaspar, J., Choudry, S.A., Landgrebe, D., Vielhaber, M.: Concurrent selection of material and joining technology – an initial utility-based systematic decision-making tool. In: 2018 Annual IEEE International Systems Conference (SysCon), pp. 767–774 (2018)
Google Scholar
Choudry, S.A., Haass, S., Alber, U., Landgrebe, D.: A methodical approach for a technological assessment of joining technologies – optimized decision-making in car body development. In: DS 92: Proceedings of the DESIGN 2018 15th International Design Conference, pp. 225–236 (2018)
Google Scholar
Kaspar, J., Choudry, S.A., Vielhaber, M.: Integrierte bewertung und auswahl von werkstoff und fügetechnik – beispiel: karosseriebau. In: Stuttgarter Symposium für Produktentwicklung SSP 2019, 16 May 2019, Stuttgart, Germany (2019, in press)
Google Scholar