Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 190))

  • 196 Accesses

Abstract

Here we consider the quantitative Caputo and Canavati fractional approximation of positive sublinear operators to the unit operator. These are given a precise Choquet integral interpretation. Initially we start with the study of the fractional rate of the convergence of the well-known Bernstein–Kantorovich–Choquet and Bernstein–Durrweyer–Choquet polynomial Choquet-integral operators. Then we study the very general comonotonic positive sublinear operators based on the representation theorem of Schmeidler [18]. We finish with the approximation by the very general direct Choquet-integral form positive sublinear operators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Anastassiou, Fractional Differentiation Inequalities (Springer, Heidelberg, 2009)

    Chapter  Google Scholar 

  2. G. Anastassiou, On right fractional calculus. Chaos Solitons Fractals 42, 365–376 (2009)

    Article  MathSciNet  Google Scholar 

  3. G. Anastassiou, Fractional Korovkin theory. Chaos Solitons Fractals 42, 2080–2094 (2009)

    Article  MathSciNet  Google Scholar 

  4. G. Anastassiou, Intelligent Mathematics: Computational Analysis (Springer, Heidelberg, 2011)

    Book  Google Scholar 

  5. G. Anastassiou, Caputo Fractional Approximation by Sublinear Operators (2017). Submitted

    Google Scholar 

  6. G. Anastassiou, Canavati fractional approximation by max-product operator. Prog. Fract. Differ. Appl. 4(3), 1–17 (2018)

    Article  MathSciNet  Google Scholar 

  7. G. Anastassiou, Caputo and Canavati fractional approximation by Choquet integrals, Progress in Fractional Differentiation and Applications (2018). Accepted

    Google Scholar 

  8. J.A. Canavati, The Riemann-Liouville integral. Nieuw Archif Voor Wiskunde 5(1), 53–75 (1987)

    Google Scholar 

  9. G. Choquet, Theory of capacities. Ann. Inst. Fourier (Grenoble) 5, 131–295 (1954)

    Article  MathSciNet  Google Scholar 

  10. D. Denneberg, Non-Additive Measure and Integral (Kluwer, Dordrecht, 1994)

    Chapter  Google Scholar 

  11. K. Diethelm, The Analysis of Fractional Differential Equations (Springer, Heidelberg, 2010)

    Google Scholar 

  12. D. Dubois, H. Prade, Possibility Theory (Plenum Press, New York, 1988)

    Book  Google Scholar 

  13. A.M.A. El-Sayed, M. Gaber, On the finite Caputo and finite Riesz derivatives. Electron. J. Theor. Phys. 3(12), 81–95 (2006)

    Google Scholar 

  14. G.S. Frederico, D.F.M. Torres, Fractional optimal control in the sense of Caputo and the fractional Noether’s theorem. Int. Math. Forum 3(10), 479–493 (2008)

    Google Scholar 

  15. S. Gal, Uniform and pointwise quantitative approximation by Kantorovich-Choquet type integral operators with respect to monotone and submodular set functions. Mediterr. J. Math. 14(5), 12 (2017). Art. 205

    Google Scholar 

  16. S. Gal, S. Trifa, Quantitative estimates in uniform and pointwise approximation by Bernstein-Durrmeyer-Choquet operators. Carpathian J. Math. 33(1), 49–58 (2017)

    MathSciNet  MATH  Google Scholar 

  17. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives, Theory and Applications (Gordon and Breach, Amsterdam, 1993). [English translation from the Russian, Integrals and Derivatives of Fractional Order and Some of Their Applications (Nauka i Tekhnika, Minsk, 1987)]

    Google Scholar 

  18. D. Schmeidler, Integral representation without additivity. Proc. Am. Math. Soc. 97, 255–261 (1986)

    Article  MathSciNet  Google Scholar 

  19. D. Schmeidler, Subjective probability and expected utility without additivity. Econometrica 57, 571–587 (1989)

    Article  MathSciNet  Google Scholar 

  20. L.S. Shapley, A value for n-person games, in Contributions to the Theory of Games, ed. by H.W. Kuhn, A.W. Tucker. Annals of Mathematical Studies, vol. 28 (Princeton University Press, Princeton, 1953), pp. 307–317

    Google Scholar 

  21. Z. Wang, G.J. Klir, Generalized Measure Theory (Springer, New York, 2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George A. Anastassiou .

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anastassiou, G.A. (2019). Caputo and Canavati Fractional Quantitative Approximation by Choquet Integrals. In: Ordinary and Fractional Approximation by Non-additive Integrals: Choquet, Shilkret and Sugeno Integral Approximators. Studies in Systems, Decision and Control, vol 190. Springer, Cham. https://doi.org/10.1007/978-3-030-04287-5_9

Download citation

Publish with us

Policies and ethics