Skip to main content

Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy

  • Chapter
  • First Online:
Cholesterol Modulation of Protein Function

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1115))

Abstract

In this chapter, we review the physical properties of lipid/cholesterol mixtures involving studies of model membranes using solid-state NMR spectroscopy. The approach allows one to quantify the average membrane structure, fluctuations, and elastic deformation upon cholesterol interaction. Emphasis is placed on understanding the membrane structural deformation and emergent fluctuations at an atomistic level. Lineshape measurements using solid-state NMR spectroscopy give equilibrium structural properties, while relaxation time measurements study the molecular dynamics over a wide timescale range. The equilibrium properties of glycerophospholipids, sphingolipids, and their binary and tertiary mixtures with cholesterol are accessible. Nonideal mixing of cholesterol with other lipids explains the occurrence of liquid-ordered domains. The entropic loss upon addition of cholesterol to sphingolipids is less than for glycerophospholipids, and may drive formation of lipid rafts. The functional dependence of 2H NMR spin–lattice relaxation (R 1Z) rates on segmental order parameters (S CD) for lipid membranes is indicative of emergent viscoelastic properties. Addition of cholesterol shows stiffening of the bilayer relative to the pure lipids and this effect is diminished for lanosterol. Opposite influences of cholesterol and detergents on collective dynamics and elasticity at an atomistic scale can potentially affect lipid raft formation in cellular membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 04 December 2021

    Correction to: Chapter 5 in: A. Rosenhouse-Dantsker, A. N. Bukiya (eds.), Cholesterol Modulation of Protein Function, Advances in Experimental Medicine and Biology 1115,

References

  1. van Meer G, Voelker DR, Feigenson GW. Membrane lipids: where they are and how they behave. Nat Rev Mol Cell Biol. 2008;9:112–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Krause MR, Regen SL. The structural role of cholesterol in cell membranes: from condensed bilayers to lipid rafts. Acc Chem Res. 2014;47:3512–21.

    Article  PubMed  CAS  Google Scholar 

  3. Maxfield FR, Tabas I. Role of cholesterol and lipid organization in disease. Nature. 2005;438:612–21.

    Article  PubMed  CAS  Google Scholar 

  4. Yeagle PL. Modulation of membrane function by cholesterol. Biochimie. 1991;73:1303–10.

    Article  PubMed  CAS  Google Scholar 

  5. Brown MF. Modulation of rhodopsin function by properties of the membrane bilayer. Chem Phys Lipids. 1994;73:159–80.

    Article  PubMed  CAS  Google Scholar 

  6. Brown MF. Curvature forces in membrane lipid-protein interactions. Biochemistry. 2012;51:9782–95.

    Article  PubMed  CAS  Google Scholar 

  7. Brown MF. Soft matter in lipid–protein interactions. Annu Rev Biophys. 2017;46:379–410.

    Article  PubMed  CAS  Google Scholar 

  8. Sheng R, Chen Y, Gee HY, Stec E, Melowic HR, Blatner NR, Tun MP, Kim Y, Källberg M, Fujiwara TK, Hong JH, Kim KP, Lu H, Kusumi A, Lee MG, Cho W. Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun. 2012;3:1249.

    Article  PubMed  CAS  Google Scholar 

  9. Huang P, Nedelcu D, Watanabe M, Jao C, Kim Y, Liu J, Salic A. Cellular cholesterol directly activates smoothened in Hedgehog signaling. Cell. 2016;166:1176–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Liu S-L, Sheng R, Jung JH, Wang L, Stec E, O'Connor MJ, Song S, Bikkavilli RK, Winn RA, Lee D, Baek K, Ueda K, Levitan I, Kim K-P, Cho W. Orthogonal lipid sensors identify transbilayer asymmetry of plasma membrane cholesterol. Nature Chem Biol. 2016;13:268–74.

    Article  CAS  Google Scholar 

  11. Molugu TR, Brown MF. Cholesterol-induced suppression of membrane elastic fluctuations at the atomistic level. Chem Phys Lipids. 2016;199:39–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Arriaga LR, Rodriguez-Garcia R, Moleiro LH, Prevost S, Lopez-Montero I, Hellweg T, Monroy F. Dissipative dynamics of fluid lipid membranes enriched in cholesterol. Adv Colloid Interface Sci. 2017;247:514–20.

    Article  PubMed  CAS  Google Scholar 

  13. Seddon JM. Structure of the inverted hexagonal (HII) phase, and non-lamellar phase transitions of lipids. Biochim Biophys Acta. 1990;1031:1–69.

    Article  PubMed  CAS  Google Scholar 

  14. Seddon JM, Templer RH, Warrender NA, Huang Z, Cevc G, Marsh D. Phosphatidylcholine-fatty acid membranes: effects of headgroup hydration on the phase behaviour and structural parameters of the gel and inverse hexagonal (H||) phases. Biochim Biophys Acta. 1997;1327:131–47.

    Article  PubMed  CAS  Google Scholar 

  15. Feigenson GW. Phase behavior of lipid mixtures. Nature Chem Biol. 2006;2:560–3.

    Article  CAS  Google Scholar 

  16. Zimmerberg J, Gawrisch K. The physical chemistry of biological membranes. Nature Chem Biol. 2006;2:564–7.

    Article  CAS  Google Scholar 

  17. Krepkiy D, Mihailescu M, Freites JA, Schow EV, Worcester DL, Gawrisch K, Tobias DJ, White SH, Swartz KJ. Structure and hydration of membranes embedded with voltage-sensing domains. Nature. 2009;462:473–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Phillips R, Ursell T, Wiggins P, Sens P. Emerging roles for lipids in shaping membrane-protein function. Nature. 2009;459:379–85.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Amazon JJ, Feigenson GW. Lattice simulations of phase morphology on lipid bilayers: renormalization, membrane shape, and electrostatic dipole interactions. Phys Rev E. 2014;89:022702.

    Article  CAS  Google Scholar 

  20. Feigenson GW. Pictures of the substructure of liquid-ordered domains. Biophys J. 2015;109:854–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Rheinstädter MC, Ollinger C, Fragneto G, Demmel F, Salditt T. Collective dynamics of lipid membranes studied by inelastic neutron scattering. Phys Rev Lett. 2004;93:108107.

    Article  PubMed  CAS  Google Scholar 

  22. Brown MF, Chan SI. Bilayer membranes: deuterium and carbon-13 NMR. eMagRes. 2007:1–15.

    Google Scholar 

  23. Tyler AI, Clarke J, Seddon J, Law R. Solid state NMR of lipid model membranes. In: Owen DM, editor. Methods in membrane lipids. New York: Springer; 2015. p. 227–53.

    Google Scholar 

  24. Kaiser H-J, Lingwood D, Levental I, Sampaio JL, Kalvodova L, Rajendran L, Simons K. Order of lipid phases in model and plasma membranes. Proc Natl Acad Sci U S A. 2009;106:16645–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Orädd G, Shahedi V, Lindblom G. Effect of sterol structure on the bending rigidity of lipid membranes: a 2H NMR transverse relaxation study. Biochim Biophys Acta. 2009;1788:1762–71.

    Article  PubMed  CAS  Google Scholar 

  26. Coskun U, Simons K. Cell membranes: the lipid perspective. Structure. 2011;19:1543–8.

    Article  PubMed  CAS  Google Scholar 

  27. Kaye MD, Schmalzl K, Nibali VC, Tarek M, Rheinstädter MC. Ethanol enhances collective dynamics of lipid membranes. Phys Rev E. 2011;83(5 Pt 1):050907.

    Article  CAS  Google Scholar 

  28. Mallikarjunaiah KJ, Leftin A, Kinnun JJ, Justice MJ, Rogozea AL, Petrache HI, Brown MF. Solid-state 2H NMR shows equivalence of dehydration and osmotic pressures in lipid membrane deformation. Biophys J. 2011;100:98–107.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Leftin A, Xu X, Brown MF. Phospholipid bilayer membranes: deuterium and carbon-13 NMR spectroscopy. eMagRes. 2014;3:199–214.

    Article  CAS  Google Scholar 

  30. Kinnun JJ, Mallikarjunaiah KJ, Petrache HI, Brown MF. Elastic deformation and area per lipid of membranes: atomistic view from solid-state deuterium NMR spectroscopy. Biochim Biophys Acta. 2015;1848:246–59.

    Article  PubMed  CAS  Google Scholar 

  31. Shaghaghi M, Keyvanloo A, Huang ZH, Szoka FC, Thewalt JL. Constrained versus free cholesterol in DPPC membranes: a comparison of chain ordering ability using deuterium NMR. Langmuir. 2017;33:14405–13.

    Article  PubMed  CAS  Google Scholar 

  32. Thewalt JL. Essential insights into lipid membrane organization from essential fatty acids. Biophys J. 2018;114:254–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Molugu TR, Xu X, Lee S, Mallikarjunaiah KJ, Brown MF. Solid-state 2H NMR studies of water-mediated lipid membrane deformation. In: Webb GA, editor. Modern magnetic resonance. Cham: Springer; 2018. p. 1–27.

    Google Scholar 

  34. Soubias O, Teague WE Jr, Hines KG, Gawrisch K. Rhodopsin/lipid hydrophobic matching-rhodopsin oligomerization and function. Biophys J. 2015;108:1125–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Chawla U, Jiang YJ, Zheng W, Kuang LJ, Perera SMDC, Pitman MC, Brown MF, Liang HJ. A usual G-protein-coupled receptor in unusual membranes. Angew Chem Int Ed. 2016;55:588–92.

    Article  CAS  Google Scholar 

  36. Teague WE Jr, Soubias O, Petrache H, Fuller N, Hines KG, Rand RP, Gawrisch K. Elastic properties of polyunsaturated phosphatidylethanolamines influence rhodopsin function. Faraday Discuss. 2013;161:383–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Liang R, Li H, Swanson JMJ, Voth GA. Multiscale simulation reveals a multifaceted mechanism of proton permeation through the influenza A M2 proton channel. Proc Natl Acad Sci U S A. 2014;111:9396–401.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Soubias O, Teague WE, Hines KG, Gawrisch K. The role of membrane curvature elastic stress for function of rhodopsin-like G protein-coupled receptors. Biochimie. 2014;107:28–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Gondré-Lewis MC, Petrache HI, Wassif CA, Harries D, Parsegian A, Porter FD, Loh YP. Abnormal sterols in cholesterol-deficiency diseases cause secretory granule malformation and decreased membrane curvature. J Cell Sci. 2006;119:1876–85.

    Article  PubMed  CAS  Google Scholar 

  40. Kumar GA, Jafurulla M, Chattopadhyay A. The membrane as the gatekeeper of infection: cholesterol in host–pathogen interaction. Chem Phys Lipids. 2016;199:179–85.

    Article  PubMed  CAS  Google Scholar 

  41. Eriksson JC, Henriksson U. Bridging-cluster model for hydrophobic attraction. Langmuir. 2007;23:10026–33.

    Article  PubMed  CAS  Google Scholar 

  42. Goñi FM, Alonso A, Bagatolli LA, Brown RE, Marsh D, Prieto M, Thewalt JL. Phase diagrams of lipid mixtures relevant to the study of membrane rafts. Biochim Biophys Acta. 2008;1781:665–84.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Escriba PV, Gonzalez-Ros JM, Goni FM, Kinnunen PKJ, Vigh L, Sanchez-Magraner L, Fernandez AM, Busquets X, Horvath I, Barcelo-Coblijn G. Membranes: a meeting point for lipids, proteins and therapies. J Cell Mol Med. 2008;12:829–75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Armstrong CL, Barrett MA, Hiess A, Salditt T, Katsaras J, Shi A-C, Rheinstädter MC. Effect of cholesterol on the lateral nanoscale dynamics of fluid membranes. Eur Biophys J. 2012;41:901–13.

    Article  PubMed  CAS  Google Scholar 

  45. Armstrong CL, Marquardt D, Dies H, Kučerka N, Yamani Z, Harroun TA, Katsaras J, Shi A-C, Rheinstädter MC. The observation of highly ordered domains in membranes with cholesterol. Plos One. 2013;8:e66162.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Ackerman DG, Feigenson GW. Multiscale modeling of four-component lipid mixtures: domain composition, size, alignment, and properties of the phase interface. J Phys Chem B. 2015;119:4240–50.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Konyakhina TM, Feigenson GW. Phase diagram of a polyunsaturated lipid mixture: brain sphingomyelin/1-stearoyl-2-docosahexaenoyl-sn-glycero-3-phosphocholine/cholesterol. Biochim Biophys Acta. 2016;1858:153–61.

    Article  PubMed  CAS  Google Scholar 

  48. Epand RM. Lipid polymorphism and protein-lipid interactions. Biochim Biophys Acta. 1998;1376:353–68.

    Article  PubMed  CAS  Google Scholar 

  49. Epand RM. Cholesterol and the interaction of proteins with membrane domains. Prog Lipid Res. 2006;45:279–94.

    Article  PubMed  CAS  Google Scholar 

  50. Scheidt HA, Meyer T, Nikolaus J, Baek DJ, Haralampiev I, Thomas L, Bittman R, Mueller P, Herrmann A, Huster D. Cholesterol’s aliphatic side chain modulates membrane properties. Angew Chem Int Ed. 2013;52:12848–51.

    Article  CAS  Google Scholar 

  51. Sodt AJ, Sandar ML, Gawrisch K, Pastor RW, Lyman E. The molecular structure of the liquid-ordered phase of lipid bilayers. J Am Chem Soc. 2014;136:725–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Levental I, Veatch SL. The continuing mystery of lipid rafts. J Mol Biol. 2016;428:4749–64.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Brown DA, London E. Functions of lipid rafts in biological membranes. Annu Rev Cell Dev Biol. 1998;14:111–36.

    Article  PubMed  CAS  Google Scholar 

  54. Golebiewska U, Scarlata S. The effect of membrane domains on the G protein-phospholipase Cβ signaling pathway. Crit Rev Biochem Mol Biol. 2010;45:97–105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Simons K, Gerl MJ. Revitalizing membrane rafts: new tools and insights. Nat Rev Mol Cell Biol. 2010;11:688–99.

    Article  PubMed  CAS  Google Scholar 

  56. Simons K, Sampaio JL. Membrane organization and lipid rafts. Cold Spring Harb Perspect Biol. 2011;3:a004697.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Surma MA, Klose C, Simons K. Lipid-dependent protein sorting at the trans-Golgi network. Biochim Biophys Acta. 2012;1821:1059–67.

    Article  PubMed  CAS  Google Scholar 

  58. Klose C, Surma MA, Simons K. Organellar lipidomics – background and perspectives. Curr Opin Cell Biol. 2013;25:406–13.

    Google Scholar 

  59. Song Y, Kenworthy AK, Sanders CR. Cholesterol as a co-solvent and a ligand for membrane proteins. Prot Sci. 2014;23:1–22.

    Article  CAS  Google Scholar 

  60. Day CA, Kenworthy AK. Functions of cholera toxin B-subunit as a raft cross-linker. Essays Biochem. 2015;57:135–45.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Keller SL, McConnell HM. Stripe phases in lipid monolayers near a miscibility critical point. Phys Rev Lett. 1999;82:1602–5.

    Article  CAS  Google Scholar 

  62. Edidin M. The state of lipid rafts: from model membranes to cells. Annu Rev Biophys Biomol Struct. 2003;32:257–83.

    Article  PubMed  CAS  Google Scholar 

  63. Polozov IV, Gawrisch K. Characterization of the liquid-ordered state by proton MAS NMR. Biophys J. 2006;90:2051–61.

    Article  PubMed  CAS  Google Scholar 

  64. Veatch SL, Soubias O, Keller SL, Gawrisch K. Critical fluctuations in domain-forming lipid mixtures. Proc Natl Acad Sci U S A. 2007;104:17650–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Bartels T, Lankalapally RS, Bittman R, Beyer K, Brown MF. Raftlike mixtures of sphingomyelin and cholesterol investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc. 2008;130:14521–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Korade Z, Kenworthy AK. Lipid rafts, cholesterol, and the brain. Neuropharmacology. 2008;55:1265–73.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wassall SR, Stillwell W. Polyunsaturated fatty acid-cholesterol interactions: domain formation in membranes. Biochim Biophys Acta. 2009;1788:24–32.

    Article  PubMed  CAS  Google Scholar 

  68. Camley BA, Brown FLH. Dynamic simulations of multicomponent lipid membranes over long length and time scales. Phys Rev Lett. 2010;105:148102.

    Article  PubMed  CAS  Google Scholar 

  69. Lingwood D, Simons K. Lipid rafts as a membrane-organizing principle. Science. 2010;327:46–50.

    Article  PubMed  CAS  Google Scholar 

  70. Leftin A, Job C, Beyer K, Brown MF. Solid-state 13C NMR reveals annealing of raft-like membranes containing cholesterol by the intrinsically disordered protein α-synuclein. J Mol Biol. 2013;425:2973–87.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Meinhardt S, Vink RLC, Schmid F. Monolayer curvature stabilizes nanoscale raft domains in mixed lipid bilayers. Proc Natl Acad Sci U S A. 2013;110:4476–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Quinn PJ. Structure of sphingomyelin bilayers and complexes with cholesterol forming membrane rafts. Langmuir. 2013;29:9447–56.

    Article  PubMed  CAS  Google Scholar 

  73. Leftin A, Molugu TR, Job C, Beyer K, Brown MF. Area per lipid and cholesterol interactions in membranes by separated local-field 13C NMR spectroscopy. Biophys J. 2014;107:2274–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Ipsen JH, Karlström G, Mouritsen OG, Wennerström H, Zuckermann MJ. Phase equilibria in the phosphatidylcholine-cholesterol system. Biochim Biophys Acta. 1987;905:162–72.

    Article  PubMed  CAS  Google Scholar 

  75. Vist MR, Davis JH. Phase-equilibria of cholesterol dipalmitoylphosphatidylcholine mixtures: 2H nuclear magnetic-resonance and differential scanning calorimetry. Biochemistry. 1990;29:451–64.

    Article  PubMed  CAS  Google Scholar 

  76. Simons K, Ikonen E. How cells handle cholesterol. Science. 2000;290:1721–6.

    Google Scholar 

  77. Simons K, Toomre D. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol. 2000;1:31–9.

    Article  PubMed  CAS  Google Scholar 

  78. Ge Y, Gao J, Jordan R, Naumann CA. Changes in cholesterol level alter integrin sequestration in raft-mimicking lipid mixtures. Biophys J. 2018;114:158–67.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Greenwood AI, Pan J, Mills TT, Nagle JF, Epand RM, Tristram-Nagle S. CRAC motif peptide of the HIV-1 gp41 protein thins SOPC membranes and interacts with cholesterol. Biochim Biophys Acta. 2008;1778:1120–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Baier CJ, Fantini J, Barrantes FJ. Disclosure of cholesterol recognition motifs in transmembrane domains of the human nicotinic acetylcholine receptor. Sci Rep. 2011;69:1–7.

    Google Scholar 

  81. Fantini J, Barrantes FJ. How cholesterol interacts with membrane proteins: an exploration of cholesterol-binding sites including CRAC, CARC, and tilted domains. Front Physiol. 2013;4:1–9.

    Google Scholar 

  82. Koufos E, Chang EH, Rasti ES, Krueger E, Brown AC. Use of a cholesterol recognition amino acid consensus peptide to inhibit binding of a bacterial toxin to cholesterol. Biochemistry. 2016;55:4787–97.

    Article  PubMed  CAS  Google Scholar 

  83. Jafurulla M, Tiwari S, Chattopadhyay A. Identification of cholesterol recognition amino acid consensus (CRAC) motif in G-protein coupled receptors. Biochim Biophys Res Commun. 2011;404:569–73.

    Article  CAS  Google Scholar 

  84. Vogel A, Tan K-T, Waldmann H, Feller SE, Brown MF, Huster D. Flexibility of Ras lipid modifications studied by 2H solid-state NMR and molecular dynamics simulations. Biophys J. 2007;93:2697–712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Weise K, Huster D, Kapoor S, Triola G, Waldmann H, Winter R. Gibbs energy determinants of lipoprotein insertion into lipid membranes: the case study of Ras proteins. Faraday Discuss. 2013;161:549–61.

    Article  PubMed  CAS  Google Scholar 

  86. Hubbell WL, McConnell HM. Molecular motion in spin-labeled phospholipids and membranes. J Am Chem Soc. 1971;93:314–26.

    Article  PubMed  CAS  Google Scholar 

  87. Semer R, Gelerinter E. Spin label study of the effects of sterols on egg lecithin bilayers. Chem Phys Lipids. 1979;23:201–11.

    Article  CAS  Google Scholar 

  88. Delmelle M, Butler KW, Smith ICP. Saturation transfer electron-spin resonance spectroscopy as a probe of anisotropic motion in model membrane systems. Biochemistry. 1980;19:698–704.

    Article  PubMed  CAS  Google Scholar 

  89. Manukovsky N, Sanders E, Matalon E, Wolf SG, Goldfarb D. Membrane curvature and cholesterol effects on lipids packing and spin-labelled lipids conformational distributions. Mol Phys. 2013;111:2887–96.

    Article  CAS  Google Scholar 

  90. Williams JA, Wassall CD, Kemple MD, Wassall SR. An electron paramagnetic resonance method for measuring the affinity of a spin-labeled analog of cholesterol for phospholipids. J Membr Biol. 2013;246:689–96.

    Article  PubMed  CAS  Google Scholar 

  91. Cheng C-Y, Olijve LLC, Kausik R, Han S. Cholesterol enhances surface water diffusion of phospholipid bilayers. J Chem Phys. 2014;141:22D513.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Lai AL, Freed JH. HIV gp41 fusion peptide increases membrane ordering in a cholesterol-dependent fashion. Biophys J. 2014;106:172–81.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Stepien P, Polit A, Wisniewska-Becker A. Comparative EPR studies on lipid bilayer properties in nanodiscs and liposomes. Biochim Biophys Acta. 2015;1848:60–6.

    Article  PubMed  CAS  Google Scholar 

  94. Vitiello G, Falanga A, Alcides Petruk A, Merlino A, Fragneto G, Paduano L, Galdiero S, D'Errico G. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism. Soft Matter. 2015;11:3003–16.

    Article  PubMed  CAS  Google Scholar 

  95. Lippert JL, Peticolas W l. Laser Raman investigation of effect of cholesterol on conformational changes in dipalmitoyl lecithin multilayers. Proc Natl Acad Sci U S A. 1971;68:1572–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Tantipolphan R, Rades T, Strachan CJ, Gordon KC, Medlicott NJ. Analysis of lecithin–cholesterol mixtures using Raman spectroscopy. J Pharm Biomed Anal. 2006;41:476–84.

    Article  PubMed  CAS  Google Scholar 

  97. Mendelsohn R. Laser-Raman spectroscopic study of egg lecithin and egg lecithin-cholesterol mixtures. Biochim Biophys Acta. 1972;290:15–21.

    Article  PubMed  CAS  Google Scholar 

  98. Umemura J, Cameron DG, Mantsch HH. A Fourier transform infrared spectroscopic study of the molecular interaction of cholesterol with 1,2-dipalmitoyl-sn-glycero-3-phosphocholine. Biochim Biophys Acta. 1980;602:32–44.

    Article  PubMed  CAS  Google Scholar 

  99. Gagoś M, Arczewska M. FTIR spectroscopic study of molecular organization of the antibiotic amphotericin B in aqueous solution and in DPPC lipid monolayers containing the sterols cholesterol and ergosterol. Eur Biophys J. 2012;41:663–73.

    Article  PubMed  CAS  Google Scholar 

  100. Xu XL, London E. The effect of sterol structure on membrane lipid domains reveals how cholesterol can induce lipid domain formation. Biochemistry. 2000;39:843–9.

    Article  PubMed  CAS  Google Scholar 

  101. Yasuda T, Matsumori N, Tsuchikawa H, Lonnfors M, Nyholm TKM, Slotte JP, Murata M. Formation of gel-like nanodomains in cholesterol-containing sphingomyelin or phosphatidylcholine binary membrane as examined by fluorescence lifetimes and 2H NMR spectra. Langmuir. 2015;31:13783–92.

    Article  PubMed  CAS  Google Scholar 

  102. Iwasaki F, Suga K, Okamoto Y, Umakoshi H. Characterization of DDAB/cholesterol vesicles and its comparison with lipid/cholesterol vesicles. J Nanosci Nanotechnol. 2018;18:1989–94.

    Article  PubMed  CAS  Google Scholar 

  103. Sparr E, Eriksson L, Bouwstra JA, Ekelund K. AFM study of lipid monolayers: III. Phase behavior of ceramides, cholesterol and fatty acids. Langmuir. 2001;17:164–72.

    Article  CAS  Google Scholar 

  104. Lawrence JC, Saslowsky DE, Edwardson JM, Henderson RM. Real-time analysis of the effects of cholesterol on lipid raft behavior using atomic force microscopy. Biophys J. 2003;84:1827–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Sacchi M, Balleza D, Vena G, Puia G, Facci P, Alessandrini A. Effect of neurosteroids on a model lipid bilayer including cholesterol: an atomic force microscopy study. Biochim Biophys Acta. 2015;1848:1258–67.

    Article  PubMed  CAS  Google Scholar 

  106. Warschawski DE, Devaux PF. 1H-13C Polarization transfer in membranes: a tool for probing lipid dynamics and the effect of cholesterol. J Magn Reson. 2005;177:166–71.

    Article  PubMed  CAS  Google Scholar 

  107. Holland GP, Alam TM. Multi-dimensional 1H-13C HETCOR and FSLG-HETCOR NMR study of sphingomyelin bilayers containing cholesterol in the gel and liquid crystalline states. J Magn Reson. 2006;181:316–26.

    Article  PubMed  CAS  Google Scholar 

  108. Stockton GW, Polnaszek CF, Tulloch AP, Hasan F, Smith ICP. Molecular-motion and order in single-bilayer vesicles and multilamellar dispersions of egg lecithin and lecithin-cholesterol mixtures. A deuterium nuclear magnetic resonance study of specifically labeled lipids. Biochemistry. 1976;15:954–66.

    Google Scholar 

  109. Brown MF. Anisotropic nuclear spin relaxation of cholesterol in phospholipid bilayers. Mol Phys. 1990;71:903–8.

    Article  CAS  Google Scholar 

  110. Weisz K, Gröbner G, Mayer C, Stohrer J, Kothe G. Deuteron nuclear magnetic resonance study of the dynamic organization of phospholipid/cholesterol bilayer membranes: molecular properties and viscoelastic behavior. Biochemistry. 1992;31:1100–12.

    Article  PubMed  CAS  Google Scholar 

  111. Martinez GV, Dykstra EM, Lope-Piedrafita S, Job C, Brown MF. NMR elastometry of fluid membranes in the mesoscopic regime. Phys Rev E. 2002;66:050902.

    Article  CAS  Google Scholar 

  112. Martinez GV, Dykstra EM, Lope-Piedrafita S, Brown MF. Lanosterol and cholesterol-induced variations in bilayer elasticity probed by 2H NMR relaxation. Langmuir. 2004;20:1043–6.

    Article  PubMed  CAS  Google Scholar 

  113. Bunge A, Mueller P, Stoeckl M, Herrmann A, Huster D. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures. Biophys J. 2008;94:2680–90.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Matsumori N, Yasuda T, Okazaki H, Suzuki T, Yamaguchi T, Tsuchikawa H, Doi M, Oishi T, Murata M. Comprehensive molecular motion capture for sphingomyelin by site-specific deuterium labeling. Biochemistry. 2012;51:8363–70.

    Article  PubMed  CAS  Google Scholar 

  115. Ferreira TM, Coreta-Gomes F, Ollila OHS, Moreno MJ, Vaz WLC, Topgaard D. Cholesterol and POPC segmental order parameters in lipid membranes: solid state 1H–13C NMR and MD simulation studies. Phys Chem Chem Phys. 2013;15:1976–89.

    Article  CAS  PubMed  Google Scholar 

  116. Shaghaghi M, Chen MT, Hsueh YW, Zuckermann MJ, Thewalt JL. Effect of sterol structure on the physical properties of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine membranes determined using 2H nuclear magnetic resonance. Langmuir. 2016;32:7654–63.

    Google Scholar 

  117. Vogel A, Scheidt HA, Baek DJ, Bittman R, Huster D. Structure and dynamics of the aliphatic cholesterol side chain in membranes as studied by 2H NMR spectroscopy and molecular dynamics simulation. Phys Chem Chem Phys. 2016;18:3730–8.

    Article  PubMed  CAS  Google Scholar 

  118. Molugu TR, Lee S, Brown MF. Concepts and methods of solid-state NMR spectroscopy applied to biomembranes. Chem Rev. 2017;117:12087–132.

    Article  PubMed  CAS  Google Scholar 

  119. Schmidt ML, Davis JH. Liquid disordered-liquid ordered phase coexistence in lipid/cholesterol mixtures: a deuterium 2D NMR exchange study. Langmuir. 2017;33:1881–90.

    Article  PubMed  CAS  Google Scholar 

  120. Ivankin A, Kuzmenko I, Gidalevitz D. Cholesterol-phospholipid interactions: new insights from surface X-ray scattering data. Phys Rev Lett. 2010;104:108101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Pan J, Cheng X, Heberle FA, Mostofian B, Kučerka N, Drazba P, Katsaras J. Interactions between ether phospholipids and cholesterol as determined by scattering and molecular dynamics simulations. J Phys Chem B. 2012;116:14829–38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Foglia F, Lawrence MJ, DemÄ— B, Fragneto G, Barlow D. Neutron diffraction studies of the interaction between amphotericin B and lipid-sterol model membranes. Sci Rep. 2012;2:778.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Armstrong CL, Haeussler W, Seydel T, Katsaras J, Rheinstädter MC. Nanosecond lipid dynamics in membranes containing cholesterol. Soft Matter. 2014;10:2600–11.

    Article  PubMed  CAS  Google Scholar 

  124. Toppozini L, Meinhardt S, Armstrong CL, Yamani Z, Kučerka N, Schmid F, Rheinstädter MC. Structure of cholesterol in lipid rafts. Phys Rev Lett. 2014;113:228101.

    Article  PubMed  CAS  Google Scholar 

  125. McConnell H. Complexes in ternary cholesterol-phospholipid mixtures. Biophys J. 2005;88:L23–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Stanich CA, Honerkamp-Smith AR, Putzel GG, Warth CS, Lamprecht AK, Mandal P, Mann E, Hua T-AD, Keller SL. Coarsening dynamics of domains in lipid membranes. Biophys J. 2013;105:444–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Brown MF, Thurmond RL, Dodd SW, Otten D, Beyer K. Composite membrane deformation on the mesoscopic length scale. Phys Rev E. 2001;64:010901.

    Article  CAS  Google Scholar 

  128. Brown MF. Membrane structure and dynamics studied with NMR spectroscopy. In: Merz KM, Roux B, editors. Biological membranes: a molecular perspective from computation and experiment. Basel: Birkhäuser; 1996. p. 175–252.

    Chapter  Google Scholar 

  129. Leftin A, Brown MF. An NMR database for simulations of membrane dynamics. Biochim Biophys Acta. 2011;1808:818–39.

    Article  PubMed  CAS  Google Scholar 

  130. Kinnun JJ, Leftin A, Brown MF. Solid-state NMR spectroscopy for the physical chemistry laboratory. J Chem Educ. 2013;90:123–8.

    Article  CAS  Google Scholar 

  131. Seelig J. Deuterium magnetic resonance: theory and application to lipid membranes. Q Rev Biophys. 1977;10:353–418.

    Article  PubMed  CAS  Google Scholar 

  132. Seelig J, Seelig A. Lipid conformation in model membranes and biological membranes. Q Rev Biophys. 1980;13:19–61.

    Google Scholar 

  133. Seelig J, Macdonald PM. Phospholipids and proteins in biological membranes. 2H NMR as a method to study structure, dynamics, and interactions. Acc Chem Res. 1987;20:221–8.

    Article  CAS  Google Scholar 

  134. Brown MF, Chan SI. Bilayer membranes: deuterium & carbon-13 NMR. In: Harris RK, Grant DM, editors. Encyclopedia of magnetic resonance. New York: Wiley; 1996. p. 871–85.

    Google Scholar 

  135. Brown MF, Lope-Piedrafita S, Martinez GV, Petrache HI. Solid-state deuterium NMR spectroscopy of membranes. In: Webb GA, editor. Modern magnetic resonance. Heidelberg: Springer; 2006. p. 245–56.

    Google Scholar 

  136. Xu X, Struts AV, Brown MF. Generalized model-free analysis of nuclear spin relaxation experiments. eMagRes. 2014;3:275–86.

    Article  CAS  Google Scholar 

  137. Rose ME. Elementary theory of angular momentum. New York: Wiley; 1957.

    Book  Google Scholar 

  138. Petrache HI, Dodd SW, Brown MF. Area per lipid and acyl length distributions in fluid phosphatidylcholines determined by 2H NMR spectroscopy. Biophys J. 2000;79:3172–92.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  139. Thurmond RL, Dodd SW, Brown MF. Molecular areas of phospholipids as determined by 2H NMR spectroscopy: comparison of phosphatidylethanolamines and phosphatidylcholines. Biophys J. 1991;59:108–13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  140. Jansson M, Thurmond RL, Barry JA, Brown MF. Deuterium NMR study of intermolecular interactions in lamellar phases containing palmitoyllysophosphatidylcholine. J Phys Chem. 1992;96:9532–44.

    Article  CAS  Google Scholar 

  141. Nagle JF, Tristram-Nagle S. Structure of lipid bilayers. Biochim Biophys Acta. 2000;1469:159–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  142. Pastor RW, Venable RM, Feller SE. Lipid bilayers, NMR relaxation, and computer simulations. Acc Chem Res. 2002;35:438–46.

    Article  PubMed  CAS  Google Scholar 

  143. Huber T, Rajamoorthi K, Kurze VF, Beyer K, Brown MF. Structure of docosahexaenoic acid-containing phospholipid bilayers as studied by 2H NMR and molecular dynamics simulations. J Am Chem Soc. 2002;124:298–309.

    Article  PubMed  CAS  Google Scholar 

  144. Klauda JB, Venable RM, MacKerell AD Jr, Pastor RW. Considerations for lipid force field development. In: Feller SE, editor. Computational modeling of membrane bilayers; 2008. p. 1–48.

    Google Scholar 

  145. Klauda JB, Roberts MF, Redfield AG, Brooks BR, Pastor RW. Rotation of lipids in membranes: molecular dynamics simulation, 31P spin-lattice relaxation, and rigid-body dynamics. Biophys J. 2008;94:3074–83.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Klauda JB, Eldho NV, Gawrisch K, Brooks BR, Pastor RW. Collective and noncollective models of NMR relaxation in lipid vesicles and multilayers. J Phys Chem B. 2008;112:5924–9.

    Article  PubMed  CAS  Google Scholar 

  147. Klauda JB, Venable RM, Freites JA, O'Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B. 2010;114:7830–43.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  148. Venable RM, Sodt AJ, Rogaski B, Rui H, Hatcher E, MacKerell AD Jr, Pastor RW, Klauda JB. CHARMM all-atom additive force field for sphingomyelin: elucidation of hydrogen bonding and of positive curvature. Biophys J. 2014;107:134–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Gruner SM. Stability of lyotropic phases with curved interfaces. J Phys Chem. 1989;93:7562–70.

    Article  CAS  Google Scholar 

  150. Gawrisch K. Tafazzin senses curvature. Nature Chem Biol. 2012;8:811–2.

    Article  CAS  Google Scholar 

  151. Brown MF, Seelig J. Influence of cholesterol on the polar region of phosphatidylcholine and phosphatidylethanolamine bilayers. Biochemistry. 1978;17:381–4.

    Article  PubMed  CAS  Google Scholar 

  152. Oldfield E, Meadows M, Rice D, Jacobs R. Spectroscopic studies of specifically deuterium labeled membrane systems. Nuclear magnetic resonance investigation of effects of cholesterol in model systems. Biochemistry. 1978;17:2727–40.

    Article  PubMed  CAS  Google Scholar 

  153. Trouard TP, Nevzorov AA, Alam TM, Job C, Zajicek J, Brown MF. Influence of cholesterol on dynamics of dimyristoylphosphatidylcholine as studied by deuterium NMR relaxation. J Chem Phys. 1999;110:8802–18.

    Article  CAS  Google Scholar 

  154. Salmon A, Dodd SW, Williams GD, Beach JM, Brown MF. Configurational statistics of acyl chains in polyunsaturated lipid bilayers from 2H NMR. J Am Chem Soc. 1987;109:2600–9.

    Article  CAS  Google Scholar 

  155. Wiedmann TS, Pates RD, Beach JM, Salmon A, Brown MF. Lipid-protein interactions mediate the photochemical function of rhodopsin. Biochemistry. 1988;27:6469–74.

    Article  PubMed  CAS  Google Scholar 

  156. Petrache HI, Salmon A, Brown MF. Structural properties of docosahexaenoyl phospholipid bilayers investigated by solid-state 2H NMR spectroscopy. J Am Chem Soc. 2001;123:12611–22.

    Article  PubMed  CAS  Google Scholar 

  157. Huber T, Botelho AV, Beyer K, Brown MF. Membrane model for the G-protein-coupled receptor rhodopsin: hydrophobic interface and dynamical structure. Biophys J. 2004;86:2078–100.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Shaikh SR, Kinnun JJ, Leng X, Williams JA, Wassall SR. How polyunsaturated fatty acids modify molecular organization in membranes: insight from NMR studies of model systems. Biochim Biophys Acta. 2015;1848:211–9.

    Article  PubMed  CAS  Google Scholar 

  159. Zurzolo C, Simons K. Glycosylphosphatidylinositol-anchored proteins: membrane organization and transport. Biochim Biophys Acta. 2016;1858:632–9.

    Article  PubMed  CAS  Google Scholar 

  160. Ahmed SN, Brown DA, London E. On the origin of sphingolipid/cholesterol-rich detergent-insoluble cell membranes: physiological concentrations of cholesterol and sphingolipid induce formation of a detergent-insoluble, liquid-ordered lipid phase in model membranes. Biochemistry. 1997;36:10944–53.

    Article  PubMed  CAS  Google Scholar 

  161. Frisz JF, Lou KY, Klitzing HA, Hanafin WP, Lizunov V, Wilson RL, Carpenter KJ, Kim R, Hutcheon ID, Zimmerberg J, Weber PK, Kraft ML. Direct chemical evidence for sphingolipid domains in the plasma membranes of fibroblasts. Proc Natl Acad Sci U S A. 2013;110:E613–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  162. Hsueh YW, Gilbert K, Trandum C, Zuckermann M, Thewalt J. The effect of ergosterol on dipalmitoylphosphatidylcholine bilayers: a deuterium NMR and calorimetric study. Biophys J. 2005;88:1799–808.

    Article  PubMed  CAS  Google Scholar 

  163. Baoukina S, Rozmanov D, Tieleman DP. Composition fluctuations in lipid bilayers. Biophys J. 2017;113:2750–61.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  164. Honerkamp-Smith AR, Veatch SL, Keller SL. An introduction to critical points for biophysicists; observations of compositional heterogeneity in lipid membranes. Biochim Biophys Acta. 2009;1788:53–63.

    Article  PubMed  CAS  Google Scholar 

  165. Heberle FA, Marquardt D, Doktorova M, Geier B, Standaert RF, Heftberger P, Kollmitzer B, Nickels JD, Dick RA, Feigenson GW, Katsaras J, London E, Pabst G. Subnanometer structure of an asymmetric model membrane: interleaflet coupling influences domain properties. Langmuir. 2016;32:5195–200.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  166. McConnell HM, Radhakrishnan A. Condensed complexes of cholesterol and phospholipids. Biochim Biophys Acta. 2003;1610:159–73.

    Article  PubMed  CAS  Google Scholar 

  167. Ali MR, Cheng KH, Huang JY. Assess the nature of cholesterol-lipid interactions through the chemical potential of cholesterol in phosphatidylcholine bilayers. Proc Natl Acad Sci U S A. 2007;104:5372–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  168. Pandit SA, Scott HL. Multiscale simulations of heterogeneous model membranes. Biochim Biophys Acta. 2009;1788:136–48.

    Article  PubMed  CAS  Google Scholar 

  169. Longo GS, Schick M, Szleifer I. Stability and liquid-liquid phase separation in mixed saturated lipid bilayers. Biophys J. 2009;96:3977–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Rog T, Orlowski A, Llorente A, Skotland T, Sylvanne T, Kauhanen D, Ekroos K, Sandvig K, Vattulainen I. Interdigitation of long-chain sphingomyelin induces coupling of membrane leaflets in a cholesterol dependent manner. Biochim Biophys Acta. 2016;1858:281–8.

    Article  PubMed  CAS  Google Scholar 

  171. Radhakrishnan A. Phase separations in binary and ternary cholesterol-phospholipid mixtures. Biophys J. 2010;98:L41–3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  172. Hsueh YW, Weng CJ, Chen MT, Thewalt J, Zuckermann M. Deuterium NMR study of the effect of ergosterol on POPE membranes. Biophys J. 2010;98:1209–17.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  173. Miao L, Nielsen M, Thewalt J, Ipsen JH, Bloom M, Zuckermann MJ, Mouritsen OG. From lanosterol to cholesterol: structural evolution and differential effects on lipid bilayers. Biophys J. 2002;82:1429–44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  174. Greenwood AI, Tristram-Nagle S, Nagle JF. Partial molecular volumes of lipids and cholesterol. Chem Phys Lipids. 2006;143:1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  175. Keyvanloo A, Shaghaghi M, Zuckermann MJ, Thewalt JL. The phase behavior and organization of sphingomyelin/cholesterol membranes: a deuterium NMR study. Biophys J. 2018;114:1344–56.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  176. Williams GD, Beach JM, Dodd SW, Brown MF. Dependence of deuterium spin-lattice relaxation rates of multilamellar phospholipid dispersions on orientational order. J Am Chem Soc. 1985;107:6868–73.

    Google Scholar 

  177. Gross JD, Warschawski DE, Griffin RG. Dipolar recoupling in MAS NMR: a probe for segmental order in lipid bilayers. J Am Chem Soc. 1997;119:796–802.

    Article  CAS  Google Scholar 

  178. Gawrisch K, Eldho NV, Polozov IV. Novel NMR tools to study structure and dynamics of biomembranes. Chem Phys Lipids. 2002;116:135–51.

    Article  PubMed  CAS  Google Scholar 

  179. Brown MF, Deese AJ, Dratz EA. Proton, carbon-13, and phosphorus-31 NMR methods for the investigation of rhodopsin-lipid interactions in retinal rod outer segment membranes. Methods Enzymol. 1982;81:709–28.

    Google Scholar 

  180. Lee AG. How lipids affect the activities of integral membrane proteins. Biochim Biophys Acta. 2004;1666:62–87.

    Article  PubMed  CAS  Google Scholar 

  181. Ferreira TM, Medronho B, Martin RW, Topgaard D. Segmental order parameters in a nonionic surfactant lamellar phase studied with 1H-13C solid-state NMR. Phys Chem Chem Phys. 2008;10:6033–8.

    Article  PubMed  CAS  Google Scholar 

  182. Hong M, Schmidt-Rohr K, Pines A. NMR measurement of signs and magnitudes of C-Η dipolar couplings in lecithin. J Am Chem Soc. 1995;117:3310–1.

    Article  CAS  Google Scholar 

  183. Kobayashi M, Struts AV, Fujiwara T, Brown MF, Akutsu H. Fluid mechanical matching of H+-ATP synthase subunit c-ring with lipid membranes revealed by 2H solid-state NMR. Biophys J. 2008;94:4339–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  184. Seelig J. General features of phospholipid conformation in membranes. Z Physiol Chem. 1978;359:1049–50.

    Article  Google Scholar 

  185. Brown MF. Theory of spin-lattice relaxation in lipid bilayers and biological membranes. 2H and 14N quadrupolar relaxation. J Chem Phys. 1982;77:1576–99.

    Article  CAS  Google Scholar 

  186. Trouard TP, Alam TM, Zajicek J, Brown MF. Angular anisotropy of 2H NMR spectral densities in phospholipid bilayers containing cholesterol. Chem Phys Lett. 1992;189:67–75.

    Article  CAS  Google Scholar 

  187. Barenholz Y, Thompson TE. Sphingomyelin: biophysical aspects. Chem Phys Lipids. 1999;102:29–34.

    Article  PubMed  CAS  Google Scholar 

  188. Yun-Wei C, Costa-Filho AJ, Freed JH. Dynamic molecular structure and phase diagram of DPPC-cholesterol binary mixtures: a 2D-ELDOR study. J Phys Chem B. 2007;111:11260–70.

    Article  CAS  Google Scholar 

  189. Smith AK, Freed JH. Determination of tie-line fields for coexisting lipid phases: an ESR study. J Phys Chem B. 2009;113:3957–71.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  190. Tong J, Borbat PP, Freed JH, Shin Y-K. A scissors mechanism for stimulation of SNARE-mediated lipid mixing by cholesterol. Proc Natl Acad Sci U S A. 2009;106:5141–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  191. Ipsen JH, Mouritsen OG, Bloom M. Relationships between lipid membrane area, hydrophobic thickness, and acyl-chain orientational order. The effects of cholesterol. Biophys J. 1990;57:405–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  192. Chen Z, Rand RP. The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J. 1997;73:267–76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  193. Filippov A, Orädd G, Lindblom G. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers. Biophys J. 2003;84:3079–86.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  194. Ohvo-Rekilä H, Ramstedt B, Leppimäki P, Slotte JP. Cholesterol interactions with phospholipids in membranes. Prog Lipid Res. 2002;41:66–97.

    Article  PubMed  Google Scholar 

  195. Ramstedt B, Slotte JP. Sphingolipids and the formation of sterol-enriched ordered membrane domains. Biochim Biophys Acta. 2006;1758:1945–56.

    Article  PubMed  CAS  Google Scholar 

  196. Brown MF, Thurmond RL, Dodd SW, Otten D, Beyer K. Elastic deformation of membrane bilayers probed by deuterium NMR relaxation. J Am Chem Soc. 2002;124:8471–84.

    Article  PubMed  CAS  Google Scholar 

  197. Brown MF. Unified picture for spin-lattice relaxation of lipid bilayers and biomembranes. J Chem Phys. 1984;80:2832–6.

    Article  CAS  Google Scholar 

  198. Klauda JB, Kučerka N, Brooks BR, Pastor RW, Nagle JF. Simulation-based methods for interpreting X-ray data from lipid bilayers. Biophys J. 2006;90:2796–807.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  199. Brown MF. Theory of spin-lattice relaxation in lipid bilayers and biological membranes. Dipolar relaxation. J Chem Phys. 1984;80:2808–31.

    Article  CAS  Google Scholar 

  200. Nevzorov AA, Brown MF. Dynamics of lipid bilayers from comparative analysis of 2H and 13C nuclear magnetic resonance relaxation data as a function of frequency and temperature. J Chem Phys. 1997;107:10288–310.

    Article  CAS  Google Scholar 

  201. Nevzorov AA, Trouard TP, Brown MF. Lipid bilayer dynamics from simultaneous analysis of orientation and frequency dependence of deuterium spin-lattice and quadrupolar order relaxation. Phys Rev E. 1998;58:2259–81.

    Article  CAS  Google Scholar 

  202. Bloom M, Evans E. Observations of surface undulations on the mesoscopic length scale by NMR. In: Peliti L, editor. Biologically inspired physics. New York: Plenum; 1991. p. 137–47.

    Chapter  Google Scholar 

  203. Bloom M, Evans E, Mouritsen OG. Physical properties of the fluid lipid-bilayer component of cell membranes: a perspective. Q Rev Biophys. 1991;24:293–397.

    Article  PubMed  CAS  Google Scholar 

  204. Althoff G, Stauch O, Vilfan M, Frezzato D, Moro GJ, Hauser P, Schubert R, Kothe G. Transverse nuclear spin relaxation studies of viscoelastic properties of membrane vesicles. II. Experimental results. J Phys Chem B. 2002;106:5517–26.

    Article  CAS  Google Scholar 

  205. Althoff G, Frezzato D, Vilfan M, Stauch O, Schubert R, Vilfan I, Moro GJ, Kothe G. Transverse nuclear spin relaxation studies of viscoelastic properties of membrane vesicles. I. Theory. J Phys Chem B. 2002;106:5506–16.

    Article  CAS  Google Scholar 

  206. Brown MF, Ribeiro AA, Williams GD. New view of lipid bilayer dynamics from 2H and 13C NMR relaxation time measurements. Proc Natl Acad Sci U S A. 1983;80:4325–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  207. Endress E, Heller H, Casalta H, Brown MF, Bayerl TM. Anisotropic motion and molecular dynamics of cholesterol, lanosterol, and ergosterol in lecithin bilayers studied by quasi-elastic neutron scattering. Biochemistry. 2002;41:13078–86.

    Article  PubMed  CAS  Google Scholar 

  208. Rog T, Pasenkiewicz-Gierula M, Vattulainen I, Karttunen M. What happens if cholesterol is made smoother: importance of methyl substituents in cholesterol ring structure on phosphatidylcholine-sterol interaction. Biophys J. 2007;92:3346–57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  209. Shahedi V, Orädd G, Lindblom G. Domain-formation in DOPC/SM bilayers studied by pfg-NMR: effect of sterol structure. Biophys J. 2006;91:2501–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  210. Endress E, Bayerl S, Prechtel K, Maier C, Merkel R, Bayerl TM. The effect of cholesterol, lanosterol, and ergosterol on lecithin bilayer mechanical properties at molecular and microscopic dimensions: a solid-state NMR and micropipet study. Langmuir. 2002;18:3293–9.

    Article  CAS  Google Scholar 

  211. Yeagle PL, Martin RB, Lala AK, Lin H-K, Bloch K. Differential effects of cholesterol and lanosterol on artificial membranes. Proc Natl Acad Sci U S A. 1977;74:4924–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Bloch K. Sterol structure and membrane function. CRC Crit Rev Biochem. 1983;14:47–92.

    Article  PubMed  CAS  Google Scholar 

  213. Yeagle PL. Lanosterol and cholesterol have different effects on phospholipid acyl chain ordering. Biochim Biophys Acta. 1985;815:33–6.

    Article  PubMed  CAS  Google Scholar 

  214. Cheng K-H, Lepock JR, Hui SW, Yeagle PL. The role of cholesterol in the activity of reconstituted Ca-ATPase vesicles containing unsaturated phosphatidylethanolamine. J Biol Chem. 1986;261:5081–7.

    Article  PubMed  CAS  Google Scholar 

  215. Yeagle PL, Albert AD, Boesze-Battaglia K, Young J, Frye J. Cholesterol dynamics in membranes. Biophys J. 1990;57:413–24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  216. Henriksen J, Rowat AC, Brief E, Hsueh YW, Thewalt JL, Zuckermann MJ, Ipsen JH. Universal behavior of membranes with sterols. Biophys J. 2006;90:1639–49.

    Article  PubMed  CAS  Google Scholar 

  217. Brief E, Kwak S, Cheng JTJ, Kitson N, Thewalt J, Lafleur M. Phase behavior of an equimolar mixture of N-palmitoyl-d 31-d-erythro-sphingosine, cholesterol, and palmitic acid, a mixture with optimized hydrophobic matching. Langmuir. 2009;25:7523–32.

    Google Scholar 

  218. Huang JY, Feigenson GW. Monte Carlo simulation of lipid mixtures: finding phase separation. Biophys J. 1993;65:1788–94.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  219. Hofsäß C, Lindahl E, Edholm O. Molecular dynamics simulations of phospholipid bilayers with cholesterol. Biophys J. 2003;84:2192–206.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Scheidt HA, Huster D. Structure and dynamics of the myristoyl lipid modification of Src peptides determined by 2H solid-state NMR spectroscopy. Biophys J. 2009;96:3663–72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  221. Penk A, Mueller M, Scheidt HA, Langosch D, Huster D. Structure and dynamics of the lipid modifications of a transmembrane α-helical peptide determined by 2H solid-state NMR spectroscopy. Biochim Biophys Acta. 2011;1808:784–91.

    Article  PubMed  CAS  Google Scholar 

  222. Huster D. Solid-state NMR spectroscopy to study protein lipid interactions. Biochim Biophys Acta. 2014;1841:1146–60.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the US National Institutes of Health (R01EY012049 and R01EY026041) and the US National Science Foundation (MCB-1817862 and CHE-1904125).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael F. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Molugu, T.R., Brown, M.F. (2019). Cholesterol Effects on the Physical Properties of Lipid Membranes Viewed by Solid-state NMR Spectroscopy. In: Rosenhouse-Dantsker, A., Bukiya, A.N. (eds) Cholesterol Modulation of Protein Function. Advances in Experimental Medicine and Biology, vol 1115. Springer, Cham. https://doi.org/10.1007/978-3-030-04278-3_5

Download citation

Publish with us

Policies and ethics