Skip to main content

Development of a Real-Time Motor-Imagery-Based EEG Brain-Machine Interface

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11307))

Included in the following conference series:

Abstract

EEG-based brain-machine interfaces offer an alternative means of interaction with the environment relying solely on interpreting brain activity. They can not only significantly improve the life quality of people with neuromuscular disabilities, but also present a wide range of opportunities for industrial and commercial applications. This work focuses on the development of a real-time brain-machine interface based on processing and classification of motor imagery EEG signals. The goal was to develop a fast and reliable system that can function in everyday noisy environments. To achieve this, various filtering, feature extraction, and classification methods were tested on three data sets, two of which were recorded in a noisy public setting. Results suggested that the tested linear classifier, paired with band power features, offers higher robustness and similar prediction accuracy, compared to a non-linear classifier based on recurrent neural networks. The final configuration was also successfully tested on a real-time system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. McFarland, D., Wolpaw, J.: EEG-based brain-computer interfaces. Current Opinion Biomed. Eng. 4, 194–200 (2017)

    Article  Google Scholar 

  2. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., Pfurtscheller, G., Vaughan, T.M.: Brain-computer interfaces for communication and control. Clin. Neurophysiol. Official J. Int. Fed. Clin. Neurophysiol. 113(6), 767–791 (2002)

    Article  Google Scholar 

  3. Schomer, D.L., Lopes da Silva, F.H.: Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins, Philadelphia (2011)

    Google Scholar 

  4. Pfurtscheller, G., Lopes Da Silva, F.H.: Event-related EEG/MEG synchronization and desynchronization: Basic principles. Clin. Neurophysiol. 110(11), 1842–1857 (1999)

    Article  Google Scholar 

  5. Pfurtscheller, G., Neuper, C.: Dynamics of sensorimotor oscillations in a motor task. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds.) Brain-Computer Interfaces. The Frontiers Collection. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02091-9_3

    Chapter  Google Scholar 

  6. Blankertz, B., et al.: The Berlin Brain-Computer Interface presents the novel mental typewriter Hex-o-Spell. In: 3rd International BCI Workshop and Training Course, pp. 2–3. Graz (2006)

    Google Scholar 

  7. Pfurtscheller, G., Brunner, C., Leeb, R., Scherer, R.: The graz brain-computer interface. In: Graimann, B., Pfurtscheller, G., Allison, B. (eds.) Brain-Computer Interfaces. The Frontiers Collection. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02091-9_5

    Chapter  Google Scholar 

  8. Wolpaw, J.R., McFarland, D.J., Vaughan, T.M.: Brain-computer interface research at the Wadsworth Center. IEEE Trans. Rehabil. Eng. 8(2), 222–226 (2000)

    Article  Google Scholar 

  9. Prakaksita, N., Kuo, C.Y., Kuo, C.H.: Development of a motor imagery based brain-computer interface for humanoid robot control applications. In: 2016 IEEE International Conference on Industrial Technology (ICIT), pp. 1607–1613. IEEE, Taipei (2016)

    Google Scholar 

  10. Tibor Schirrmeister, R., et al.: Deep learning with convolutional neural networks for EEG decoding and visualization. Hum. Brain Mapp. 38, 5391–5420 (2017)

    Article  Google Scholar 

  11. Brunner, C., Leeb, R., Müller-Putz, G., Schlögl, A., Pfurtscheller, G.: BCI Competition 2008 - Graz data set A. Graz (2008)

    Google Scholar 

  12. Naeem, M., Brunner, C., Leeb, R., Graimann, B., Pfurtscheller, G.: Seperability of four-class motor imagery data using independent components analysis. J. Neural Eng. 3, 208–216 (2006)

    Article  Google Scholar 

  13. Klem, G.H., Lüders, H.O., Jasper, H.H., Elger, C.: The ten-twenty electrode system of the International Federation. Electroencephalogr. Clin. Neurophysiol. Suppl. 52, 2–5 (1999)

    Google Scholar 

  14. Widmann, A., Schröger, E., Maess, B.: Digital filter design for electrophysiological data - a practical approach. J. Neurosci. Methods 250, 34–46 (2015)

    Article  Google Scholar 

  15. Alessio, S.M.: Digital Signal Processing and Spectral Analysis for Scientists. Springer International Publishing, Switzerland (2016)

    Book  Google Scholar 

  16. Pfurtscheller, G., et al.: Current trends in graz brain-computer interface (BCI) research. IEEE Trans. Biomed. Eng. 8(2), 216–219 (2000)

    Google Scholar 

  17. Hjorth, B.: EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. 29(3), 306–310 (1981)

    Article  Google Scholar 

  18. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, New York (2009)

    Book  Google Scholar 

  19. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press (2011)

    Google Scholar 

  20. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. In: 3rd International Conference for Learning Representations. San Diego (2015)

    Google Scholar 

  21. Slovenian Initiative for National Grid (SLING). http://www.sling.si

  22. Berger Neurorobotics. http://bergerneurorobotics.com/

  23. Sun, S., Zhou, J.: A review of adaptive feature extraction and classification methods for EEG-based brain-computer interfaces. In: Proceedings of the International Joint Conference on Neural Networks, pp. 1746–1753. IEEE, Beijing (2014)

    Google Scholar 

Download references

Acknowledgement

This work is supported by Centre for BioRobotics (CBR) at University of Southern Denmark (SDU, Denmark) and Horizon 2020 Framework Programme (FETPROACT-01-2016–FET Proactive: emerging themes and communities) under grant agreement no. 732266 (Plan4Act).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gal Gorjup or Poramate Manoonpong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gorjup, G., Vrabič, R., Stoyanov, S.P., Andersen, M.Ø., Manoonpong, P. (2018). Development of a Real-Time Motor-Imagery-Based EEG Brain-Machine Interface. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11307. Springer, Cham. https://doi.org/10.1007/978-3-030-04239-4_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04239-4_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04238-7

  • Online ISBN: 978-3-030-04239-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics