Skip to main content

Comparing Computing Platforms for Deep Learning on a Humanoid Robot

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11307))

Included in the following conference series:

Abstract

The goal of this study is to test two different computing platforms with respect to their suitability for running deep networks as part of a humanoid robot software system. One of the platforms is the CPU-centered Intel® NUC7i7BNH and the other is a NVIDIA® Jetson TX2 system that puts more emphasis on GPU processing. The experiments addressed a number of benchmarking tasks including pedestrian detection using deep neural networks. Some of the results were unexpected but demonstrate that platforms exhibit both advantages and disadvantages when taking computational performance and electrical power requirements of such a system into account.

Supported by an Australian Government Research Training Program scholarship and a top-up scholarship through 4Tel Pty.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abouelfarag, A.A., Nouh, N.M., ElShenawy, M.: Improving performance of dense linear algebra with multi-core architecture. In: 2017 International Conference on High Performance Computing Simulation (HPCS), pp. 870–874, July 2017. https://doi.org/10.1109/HPCS.2017.132

  2. Allgeuer, P., Farazi, H., Schreiber, M., Behnke, S.: Child-sized 3D printed IGUS humanoid open platform. In: IEEE-RAS 15th International Conference on Humanoid Robots (Humanoids) (2015)

    Google Scholar 

  3. Bainville, E.: GPU benchmarks (2009). http://www.bealto.com/gpu-benchmarks_flops.html

  4. Chalup, S.K., Murch, C.L., Quinlan, M.J.: Machine learning with aibo robots in the four legged league of robocup. IEEE Trans. Syst. Man Cybern. Part C 37(3), 297–310 (2007)

    Article  Google Scholar 

  5. Franklin, D.: NVIDIA Jetson TX2 Delivers Twice the Intelligence to the Edge (2017). https://devblogs.nvidia.com/jetson-tx2-delivers-twice-intelligence-edge/. Accessed 11 Apr 2018

  6. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  7. Gregg, C., Hazelwood, K.: Where is the data? why you cannot debate CPU vs. GPU performance without the answer. In: (IEEE ISPASS) IEEE International Symposium on Performance Analysis of Systems and Software, pp. 134–144, April 2011. https://doi.org/10.1109/ISPASS.2011.5762730

  8. Houliston, T., et al.: Nuclear: a loosely coupled software architecture for humanoid robot systems. Front. Robot. AI 3(20) (2016). https://doi.org/10.3389/frobt.2016.00020

  9. Houliston, T., Metcalfe, M., Chalup, S.K.: A fast method for adapting lookup tables applied to changes in lighting colour. In: Almeida, L., Ji, J., Steinbauer, G., Luke, S. (eds.) RoboCup 2015. LNCS (LNAI), vol. 9513, pp. 190–201. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-29339-4_16

    Chapter  Google Scholar 

  10. Howard, A.G., et al.: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. CoRR abs/1704.04861 (2017). http://arxiv.org/abs/1704.04861

  11. Huang, J., et al.: Speed/Accuracy Trade-Offs for Modern Convolutional Object Detectors. CoRR abs/1611.10012 (2016). http://arxiv.org/abs/1611.10012

  12. Intel Corporation: Product Brief: Intel®NUC Kit NUC7i7BNH (2017). https://www.intel.com.au/content/www/au/en/nuc/nuc-kit-nuc7i7bnh-brief.html. Accessed 11 Apr 2018

  13. Jabbar, A., Farrawell, L., Fountain, J., Chalup, S.K.: Training deep neural networks for detecting drinking glasses using synthetic images. In: Proceedings of the The 24th International Conference On Neural Information Processing, ICONIP 2017, Guangzhou, China, 14–18 November 2017

    Chapter  Google Scholar 

  14. Javadi, M., Azar, S.M., Azami, S., Shiry, S., Ghidary, S.S., Baltes, J.: Humanoid robot detection using deep learning: a speed-accuracy tradeoff. In: 21st Annual RoboCup International Symposium (2017, in press)

    Google Scholar 

  15. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems (NIPS 2012), vol. 25, pp. 1097–1105. Curran Associates Inc. (2012)

    Google Scholar 

  16. Lee, V.W., et al.: Debunking the 100X GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU. ACM SIGARCH Comput. Archit. News 38(3), 451–460 (2010)

    Article  Google Scholar 

  17. Levine, S., Pastor, P., Krizhevsky, A., Ibarz, J., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. Int. J. Robot. Res. 37(4), 421–436(2017). https://doi.org/10.1177/0278364917710318

    Article  Google Scholar 

  18. Lin, T., et al.: Microsoft COCO: Common Objects in Context. CoRR abs/1405.0312 (2014). http://arxiv.org/abs/1405.0312

  19. Liu, W., et al.: SSD: Single Shot MultiBox Detector. CoRR abs/1512.02325 (2015). http://arxiv.org/abs/1512.02325

  20. Metcalfe, M., Annable, B., Olejniczak, M., Chalup, S.K.: A study on detecting three-dimensional balls using boosted classifiers. In: Interactive Entertainment 2016, at the Australasian Computer Science Week (ACSW 2016), Canberra, Australia. ACM Digital Library, 2–5 February 2016. https://doi.org/10.1145/2843043.2843473

  21. Pierson, H.A., Gashler, M.S.: Deep learning in robotics: a review of recent research. Adv. Robot. 31(16), 821–835 (2017). https://doi.org/10.1080/01691864.2017.1365009

    Article  Google Scholar 

  22. Speck, D., Barros, P., Weber, C., Wermter, S.: Ball localization for robocup soccer using convolutional neural networks. In: Behnke, S., Sheh, R., Sarıel, S., Lee, D.D. (eds.) RoboCup 2016. LNCS (LNAI), vol. 9776, pp. 19–30. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68792-6_2

    Chapter  Google Scholar 

  23. Vanhoucke, V., Senior, A., Mao, M.Z.: Improving the speed of neural networks on CPUs. In: Deep Learning and Unsupervised Feature Learning Workshop, NIPS 2011 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Biddulph .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Biddulph, A., Houliston, T., Mendes, A., Chalup, S.K. (2018). Comparing Computing Platforms for Deep Learning on a Humanoid Robot. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11307. Springer, Cham. https://doi.org/10.1007/978-3-030-04239-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04239-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04238-7

  • Online ISBN: 978-3-030-04239-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics