Skip to main content

Evolution of Images with Diversity and Constraints Using a Generative Adversarial Network

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2018)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11306))

Included in the following conference series:

Abstract

Generative Adversarial Networks (GANs) are a machine learning approach that have the ability to generate novel images. Recent developments in deep learning have enabled a generation of compelling images using generative networks that encode images with lower-dimensional latent spaces. Nature-inspired optimisation methods has been used to generate new images. In this paper, we train GAN with aim of generating images that are created based on optimisation of feature scores in one or two dimensions. We use search in the latent space to generate images scoring high or low values feature measures and compare different feature measures. Our approach successfully generate image variations with two datasets, faces and butterflies. The work gives insights on how feature measures promote diversity of images and how the different measures interact.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that for feature GCF maximisation is achieved through 1/GCF and scaling in the range [0, 1].

References

  1. PyTorch tutorial: Dcgan. https://github.com/yunjey/pytorch-tutorial

  2. McCormack, J., d’Inverno, M. (eds.): Computers and Creativity. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31727-9

    Book  Google Scholar 

  3. Alexander, B., Kortman, J., Neumann, A.: Evolution of artistic image variants through feature based diversity optimisation. In: GECCO, pp. 171–178 (2017)

    Google Scholar 

  4. Correia, J., Machado, P., Romero, J., Carballal, A.: Evolving figurative images using expression-based evolutionary art. In: ICCC, p. 24 (2013)

    Google Scholar 

  5. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: CVPR, pp. 248–255. IEEE Computer Society (2009)

    Google Scholar 

  6. Dosovitskiy, A., Brox, T.: Generating images with perceptual similarity metrics based on deep networks. In: NIPS, pp. 658–666 (2016)

    Google Scholar 

  7. Dosovitskiy, A., Springenberg, J.T., Brox, T.: Learning to generate chairs with convolutional neural networks. In: CVPR, pp. 1538–1546. IEEE Computer Society (2015)

    Google Scholar 

  8. Gao, W., Nallaperuma, S., Neumann, F.: Feature-based diversity optimization for problem instance classification. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 869–879. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_81

    Chapter  Google Scholar 

  9. Gatys, L.A., Ecker, A.S., Bethge, M.: Texture synthesis using convolutional neural networks. In: NIPS, pp. 262–270 (2015)

    Google Scholar 

  10. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: CVPR, pp. 2414–2423. IEEE Computer Society (2016)

    Google Scholar 

  11. Gatys, L.A., Ecker, A.S., Bethge, M., Hertzmann, A., Shechtman, E.: Controlling perceptual factors in neural style transfer. In: CVPR, pp. 3730–3738. IEEE Computer Society (2017)

    Google Scholar 

  12. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    Google Scholar 

  13. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  14. Hansen, N., Müller, S.D., Koumoutsakos, P.: Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evol. Comput. 11(1), 1–18 (2003)

    Article  Google Scholar 

  15. den Heijer, E., Eiben, A.E.: Investigating aesthetic measures for unsupervised evolutionary art. Swarm Evol. Comput. 16, 52–68 (2014)

    Article  Google Scholar 

  16. Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interactive evolutionary computation. IEEE Trans. Evol. Comput. 16(4), 523–536 (2012)

    Article  Google Scholar 

  17. Liu, Z., Luo, P., Wang, X., Tang, X.: Deep learning face attributes in the wild. In: ICCV (2015)

    Google Scholar 

  18. Matkovic, K., Neumann, L., Neumann, A., Psik, T., Purgathofer, W.: Global contrast factor-a new approach to image contrast. In: Computational Aesthetics, pp. 159–168 (2005)

    Google Scholar 

  19. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML, pp. 807–814 (2010)

    Google Scholar 

  20. Neumann, A., Alexander, B., Neumann, F.: The evolutionary process of image transition in conjunction with box and strip mutation. In: Hirose, A., Ozawa, S., Doya, K., Ikeda, K., Lee, M., Liu, D. (eds.) ICONIP 2016. LNCS, vol. 9949, pp. 261–268. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46675-0_29

    Chapter  Google Scholar 

  21. Neumann, A., Alexander, B., Neumann, F.: Evolutionary image transition using random walks. In: Correia, J., Ciesielski, V., Liapis, A. (eds.) EvoMUSART 2017. LNCS, vol. 10198, pp. 230–245. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-55750-2_16

    Chapter  Google Scholar 

  22. Neumann, A., Neumann, F.: Evolutionary computation for digital art. In: GECCO, pp. 937–955. ACM (2018)

    Google Scholar 

  23. Neumann, A., Szpak, Z.L., Chojnacki, W., Neumann, F.: Evolutionary image composition using feature covariance matrices. In: GECCO, pp. 817–824 (2017)

    Google Scholar 

  24. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: NIPS, pp. 3387–3395 (2016)

    Google Scholar 

  25. Nixon, M., Aguado, A.S.: Feature Extraction & Image Processing, 2 edn. Academic Press, Boston (2008)

    Google Scholar 

  26. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Neumann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Neumann, A., Pyromallis, C., Alexander, B. (2018). Evolution of Images with Diversity and Constraints Using a Generative Adversarial Network. In: Cheng, L., Leung, A., Ozawa, S. (eds) Neural Information Processing. ICONIP 2018. Lecture Notes in Computer Science(), vol 11306. Springer, Cham. https://doi.org/10.1007/978-3-030-04224-0_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04224-0_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04223-3

  • Online ISBN: 978-3-030-04224-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics