Advertisement

Analysis, Classification and Marker Discovery of Gene Expression Data with Evolving Spiking Neural Networks

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11305)

Abstract

The paper presents a methodology to assess the problems behind static gene expression data modelling and analysis with machine learning techniques. As a case study, transcriptomic data collected during a longitudinal study on the effects of diet on the expression of oxidative phosphorylation genes was used. Data were collected from 60 abdominally overweight men and women after an observation period of eight weeks, whilst they were following three different diets. Real-valued static gene expression data were encoded into spike trains using Gaussian receptive fields for multinomial classification using an evolving spiking neural network (eSNN) model. Results demonstrated that the proposed method can be used for predictive modelling of static gene expression data and future works are proposed regarding the application of eSNNs for personalised modelling.

Keywords

Evolving spiking neural networks Gaussian receptive fields Static data Gene expression Microarray Transcriptome data analysis 

Notes

Acknowledgments

The presented study was a collaboration between the Knowledge Engineering and Discovery Research Institute (KEDRI, https://kedri.aut.ac.nz/) funded by the Auckland University of Technology of New Zealand and the University of Trento in Italy. Several people have contributed to the research that resulted in this paper, especially: Y. Chen, J. Hu, E. Tu and L. Zhou.

References

  1. 1.
    Cornetta, K., Brown, C.G.: Perspective: balancing personalized medicine and personalized care. Acad. Med.: J. Assoc. Am. Med. Coll. 88(3), 309 (2013)CrossRefGoogle Scholar
  2. 2.
    Dunn, M.C., Bourne, P.E.: Building the biomedical data science workforce. PLoS Biol. 15(7), e2003082 (2017)CrossRefGoogle Scholar
  3. 3.
    Greene, C.S., Tan, J., Ung, M., Moore, J.H., Cheng, C.: Big data bioinformatics. J. Cell. Physiol. 229(12), 1896–1900 (2014)CrossRefGoogle Scholar
  4. 4.
    Lancashire, L.J., Lemetre, C., Ball, G.R.: An introduction to artificial neural networks in bioinformatics-application to complex microarray and mass spectrometry datasets in cancer studies. Brief. Bioinform. 10(3), 315–329 (2009).  https://doi.org/10.1093/bib/bbp012CrossRefGoogle Scholar
  5. 5.
    Ramasamy, A., Mondry, A., Holmes, C.C., Altman, D.G.: Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 5(9), e184 (2008)CrossRefGoogle Scholar
  6. 6.
    Ay, A., Arnosti, D.N.: Mathematical modeling of gene expression: a guide for the perplexed biologist. Crit. Rev. Biochem. Mol. Biol. 46(2), 137–151 (2011)CrossRefGoogle Scholar
  7. 7.
    Kasabov, N.K.: Evolving Connectionist Systems: The Knowledge Engineering Approach. Springer, London (2007).  https://doi.org/10.1007/978-1-84628-347-5CrossRefzbMATHGoogle Scholar
  8. 8.
    Schliebs, S., Defoin-Platel, M., Worner, S., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network: exploring heterogeneous probabilistic models. Neural Netw. 22(5), 623–632 (2009)CrossRefGoogle Scholar
  9. 9.
    Soltic, S., Kasabov, N.: Knowledge extraction from evolving spiking neural networks with a rank order population coding. Int. J. Neural Syst. 20(06), 437–445 (2010)CrossRefGoogle Scholar
  10. 10.
    Wysoski, S.G., Benuskova, L., Kasabov, N.: Evolving spiking neural networks for audiovisual information processing. Neural Netw. 23(7), 819–835 (2010)CrossRefGoogle Scholar
  11. 11.
    Schliebs, S., Kasabov, N.: Evolving spiking neural networks: a survey. Evol. Syst. 4(2), 87–98 (2013)CrossRefGoogle Scholar
  12. 12.
    Kasabov, N.: Global, local and personalised modeling and pattern discovery in bioinformatics: an integrated approach. Pattern Recognit. Lett. 28(6), 673–685 (2007)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Bohte, S.M.: The evidence for neural information processing with precise spike-times: a survey. Natural Comput. 3(2), 195–206 (2004)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Schliebs, S., Defoin-Platel, M., Kasabov, N.: Integrated feature and parameter optimization for an evolving spiking neural network. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008. LNCS, vol. 5506, pp. 1229–1236. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-02490-0_149CrossRefGoogle Scholar
  15. 15.
    Bohtea, S.M., Koka, J.N., La Poutr, H.: Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing 48(1), 17–37 (2002)CrossRefGoogle Scholar
  16. 16.
    Delorme, A., Gautrais, J., Van Rullen, R., Thorpe, S.: Spikenet: a simulator for modeling large networks of integrate and fire neurons. Neurocomputing 26, 989–996 (1999)CrossRefGoogle Scholar
  17. 17.
    Thorpe, S.J., Gautrais, J.: Rapid visual processing using spike asynchrony. In: Advances in Neural Information Processing Systems, pp. 901–907 (1997)Google Scholar
  18. 18.
    Keogh, E., Mueen, A.: Curse of dimensionality. In: Sammut, C., Webb, G.I. (eds.) Encyclopedia of Machine Learning and Data Mining, pp. 314–315. Springer, Boston (2017).  https://doi.org/10.1007/978-1-4899-7687-1_192CrossRefGoogle Scholar
  19. 19.
    Barrett, T., et al.: NCBI GEO: archive for functional genomics data setsupdate. Nucleic Acids Res. 41(D1), D991–D995 (2012)CrossRefGoogle Scholar
  20. 20.
    van Dijk, S.J., et al.: Consumption of a high monounsaturated fat diet reduces oxidative phosphorylation gene expression in peripheral blood mononuclear cells of abdominally overweight men and women–4. J. Nutr. 142(7), 1219–1225 (2012)CrossRefGoogle Scholar
  21. 21.
    van Dijk, S.J., et al.: A saturated fatty acid-rich diet induces an obesity-linked proinflammatory gene expression profile in adipose tissue of subjects at risk of metabolic syndrome-. Am. J. Clin. Nutr. 90(6), 1656–1664 (2009)CrossRefGoogle Scholar
  22. 22.
    Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., Mesirov, J.P.: Genepattern 2.0. Nat. Genet. 38(5), 500 (2006)CrossRefGoogle Scholar
  23. 23.
    Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27(8), 1226–1238 (2005)CrossRefGoogle Scholar
  24. 24.
    Argyriou, A., Evgeniou, T., Pontil, M.: Multi-task feature learning. In: Advances in Neural Information Processing Systems, pp. 41–48 (2007)Google Scholar
  25. 25.
    Kasabov, N., Dhoble, K., Nuntalid, N., Indiveri, G.: Dynamic evolving spiking neural networks for on-line spatio-and spectro-temporal pattern recognition. Neural Netw. 41, 188–201 (2013)CrossRefGoogle Scholar
  26. 26.
    Schliebs, S., Kasabov, N.: Computational modeling with spiking neural networks. In: Kasabov, N. (ed.) Springer Handbook of Bio-/Neuroinformatics, pp. 625–646. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-642-30574-0_37CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Dipartimento di Ingegneria e Scienza dell’Informazione (DISI)University of TrentoPovo, TrentoItaly
  2. 2.Knowledge Engineering and Discovery Research Institute (KEDRI)Auckland University of Technology (AUT)AucklandNew Zealand
  3. 3.University of the Basque CountryBilbaoSpain
  4. 4.Ara Institute of CanterburyChristchurchNew Zealand

Personalised recommendations