A Neuronal Morphology Classification Approach Based on Deep Residual Neural Networks

  • Xianghong LinEmail author
  • Jianyang Zheng
  • Xiangwen Wang
  • Huifang Ma
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11304)


The neuron classification problem is significant for understanding structure-function relationships in computational neuroscience. Advances in recent years have accelerated the speed of data collection, resulting in a large amount of data on the geometric, morphological, physiological, and molecular characteristics of neurons. These data encourage researchers to strive for automated neuron classification through powerful machine learning techniques. This paper extracts a statistical dataset of 43 geometrical features obtained from 116 human neurons, and proposes a neuronal morphology classification approach based on deep residual neural networks with feature scaling. The approach is applied to classify 18 types of human neurons and compares the accuracy of different number of residual block. Then, we also compare the accuracy between the proposed approach and other mainstream machine learning approaches, the classification accuracy of our approach is 100% in the training set and the testing set accuracy is 76.96%. The experimental results show that the deep residual neural network model has better classification accuracy for human neurons.


Neuron classification Geometric features Deep residual neural network Feature scaling 



The work is supported by the National Natural Science Foundation of China under Grant No. 61762080, and the Medium and Small Scale Enterprises Technology Innovation Foundation of Gansu Province under Grant No. 17CX2JA038.


  1. 1.
    Buckmaster, P.S., Alonso, A., Canfiled, D.R., et al.: Dendritic morphology, local circuitry, and intrinsic electrophysiology of principal neurons in the entorhinal cortex of macaque monkeys. J. Comp. Neurol. 470(3), 317–329 (2004)CrossRefGoogle Scholar
  2. 2.
    D’Angelo, E.: The human brain project. Funct. Neurol. 306(6), 50–55 (2012)Google Scholar
  3. 3.
    Shepherd, G.M., Mirsky, J.S., Healy, M.D., et al.: The human brain project: neuroinformatics tools for integrating, searching and modeling multidisciplinary neuroscience data. Trends Neurosci. 21(11), 460–468 (1998)CrossRefGoogle Scholar
  4. 4.
    Lu, W., Bushong, E.A., Shih, T.P., et al.: The cell-autonomous role of excitatory synaptic transmission in the regulation of neuronal structure and function. Neuron 78(3), 433–439 (2013)CrossRefGoogle Scholar
  5. 5.
    Lin, X., Li, Z., Ma, H., et al.: An evolutionary developmental approach for generation of 3D neuronal morphologies using gene regulatory networks. Neurocomputing 273, 346–356 (2017)CrossRefGoogle Scholar
  6. 6.
    Alavi, A., Cavanagh, B., Tuxworth, G., et al.: Automated classification of dopaminergic neurons in the rodent brain. In: International Joint Conference on Neural Networks, Atlanta, GA, United States, pp. 81–88. IEEE (2009)Google Scholar
  7. 7.
    Han, F., Zeng, J.: Research for neuron classification based on support vector machine. In: Third International Conference on Digital Manufacturing and Automation, Guilin, China, pp. 646–649. IEEE (2012)Google Scholar
  8. 8.
    Zhang, J., Deng, S., Guo, H., et al.: Application of cluster analysis in morphological characteristics of neurons. J. Zhejiang Univ. (Agric. Life Sci.) 37(5), 493–500 (2011)Google Scholar
  9. 9.
    Li, J.: Research on neuron classification based on ensemble of extreme learning machine. Master Thesis, Donghua University, China (2017)Google Scholar
  10. 10.
    Ascoli, G.A., Donohue, D.E., Halavi, M.: NeuroMorpho.Org: a central resource for neuronal morphologies. J. Neurosci. 27(35), 9247–9251 (2007)CrossRefGoogle Scholar
  11. 11.
    Scorcioni, R., Polavaram, S., Ascoli, G.A.: L-Measure: a web-accessible tool for the analysis, comparison and search of digital reconstructions of neuronal morphologies. Nat. Protoc. 3(5), 866–876 (2008)CrossRefGoogle Scholar
  12. 12.
    Ascoli, G.A.: Computational Neuroanatomy: Principles and Methods. Humana Press, Totowa (2002)CrossRefGoogle Scholar
  13. 13.
    Schmidhuber, J.: Deep learning in neural networks: an overview. Neural Netw. 61, 85–117 (2015)CrossRefGoogle Scholar
  14. 14.
    LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)CrossRefGoogle Scholar
  15. 15.
    Erb, R.J.: Introduction to backpropagation neural network computation. Pharm. Res. 10(2), 165–170 (1993)CrossRefGoogle Scholar
  16. 16.
    He, K., Zhang, X., Ren, S., et al.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, United States, pp. 770–778. IEEE (2016)Google Scholar
  17. 17.
    Wang, Y., Moulin, P.: Optimized feature extraction for learning-based image steganalysis. IEEE Trans. Inf. Forensics Secur. 2(1), 31–45 (2007)CrossRefGoogle Scholar
  18. 18.
    Diederik P, Kingma., Jimmy, Ba.: Adam: A Method for Stochastic Optimization. Computer Science (2014)Google Scholar
  19. 19.
    Salton, G.: A vector space model for automatic indexing. Commun. ACM 18(11), 613–620 (1974)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Fukunaga, K., Hostetler, L.: Optimization of k nearest neighbor density estimates. IEEE Trans. Inf. Theory 19(3), 320–326 (1973)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Mcdonald, G.C.: Ridge regression. Wiley Interdisc. Rev. Comput. Stat. 1(1), 93–100 (2010)CrossRefGoogle Scholar
  22. 22.
    Ukil, A.: Support vector machine. Comput. Sci. 1(4), 1–28 (2002)Google Scholar
  23. 23.
    Greff, K., Srivastava, R.K., Koutník, J., et al.: LSTM: a search space odyssey. IEEE Trans. Neural Netw. Learn. Syst. 28(10), 2222–2232 (2017)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Xianghong Lin
    • 1
    Email author
  • Jianyang Zheng
    • 1
  • Xiangwen Wang
    • 1
  • Huifang Ma
    • 1
  1. 1.College of Computer Science and EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations