Skip to main content

The Inference on the Location Parameters Under Multivariate Skew Normal Settings

  • Conference paper
  • First Online:
Beyond Traditional Probabilistic Methods in Economics (ECONVN 2019)

Part of the book series: Studies in Computational Intelligence ((SCI,volume 809))

Included in the following conference series:

Abstract

In this paper, the sampling distributions of multivariate skew normal distribution are studied. Confidence regions of the location parameter, \(\varvec{\mu }\), with known scale parameter and shape parameter are obtained by the pivotal method, Inferential Models (IMs), and robust method, respectively. The hypothesis test is proceeded based on the pivotal method and the power of the test is studied using non-central skew Chi-square distribution. For illustration of these results, the graphs of confidence regions and the power of the test are presented for combinations of various values of parameters. A group of Monte Carlo simulation studies is proceeded to verify the performance of the coverage probabilities at last.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arellano-Valle, R.B., Bolfarine, H., Lachos, V.H.: Skew-normal linear mixed models. J. Data Sci. 3(4), 415–438 (2005)

    Google Scholar 

  2. Arevalillo, J.M., Navarro, H.: A stochastic ordering based on the canonical transformation of skew-normal vectors. TEST, 1–24 (2018)

    Google Scholar 

  3. Arnold, B.C., Beaver, R.J., Groeneveld, R.A., Meeker, W.Q.: The nontruncated marginal of a truncated bivariate normal distribution. Psychometrika 58(3), 471–488 (1993)

    Article  MathSciNet  Google Scholar 

  4. Ayivor, F., Govinda, K.C., Kreinovich, V.: Which confidence set is the most robust? In: 21st Joint UTEP/NMSU Workshop on Mathematics, Computer Science, and Computational Sciences (2017)

    Google Scholar 

  5. Azzalini, A.: A class of distributions which includes the normal ones. Scand. J. Stat. 12(2), 171–178 (1985)

    MathSciNet  MATH  Google Scholar 

  6. Azzalini, A., Capitanio, A.: Statistical applications of the multivariate skew normal distribution. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 61(3), 579–602 (1999)

    Article  MathSciNet  Google Scholar 

  7. Azzalini, A., Dalla Valle, A.: The multivariate skew-normal distribution. Biometrika 83(4), 715–726 (1996)

    Article  MathSciNet  Google Scholar 

  8. Azzalini, A.: Further results on a class of distributions which includes the normal ones. Statistica 46(2), 199–208 (1986)

    MathSciNet  MATH  Google Scholar 

  9. Azzalini, A.: The Skew-Normal and Related Families, vol. 3. Cambridge University Press, Cambridge (2013)

    Book  Google Scholar 

  10. Bayes, C.L., Branco, M.D.: Bayesian inference for the skewness parameter of the scalar skew-normal distribution. Braz. J. Probab. Stat. 21(2), 141–163 (2007)

    MathSciNet  MATH  Google Scholar 

  11. Branco, M.D., Dey, D.K.: A general class of multivariate skew-elliptical distributions. J. Multivar. Anal. 79(1), 99–113 (2001)

    Article  MathSciNet  Google Scholar 

  12. Dey, D.: Estimation of the parameters of skew normal distribution by approximating the ratio of the normal density and distribution functions. University of California, Riverside (2010)

    Google Scholar 

  13. Genton, M.G.: Skew-Elliptical Distributions and Their Applications: A Journey Beyond Normality. CRC Press, London (2004)

    Book  Google Scholar 

  14. Hill, M.A., Dixon, W.J.: Robustness in real life: a study of clinical laboratory data. Biometrics 38(2), 377–396 (1982)

    Article  Google Scholar 

  15. Liseo, B., Loperfido, N.: A note on reference priors for the scalar skew-normal distribution. J. Stat. Plan. Inference 136(2), 373–389 (2006)

    Article  MathSciNet  Google Scholar 

  16. Ma, Z., Zhu, X., Wang, T., Autchariyapanitkul, K.: Joint plausibility regions for parameters of skew normal family. In: International Conference of the Thailand Econometrics Society, pp. 233–245. Springer, Cham (2018)

    Google Scholar 

  17. Ma, Z., Tian, W., Li, B., Wang, T.: The decomposition of quadratic forms under skew normal settings. In: International Conference of the Thailand Econometrics Society, pp. 222–232. Springer, Cham (2018)

    Google Scholar 

  18. Mameli, V., Musio, M., Sauleau, E., Biggeri, A.: Large sample confidence intervals for the skewness parameter of the skew-normal distribution based on fisher’s transformation. J. Appl. Stat. 39(8), 1693–1702 (2012)

    Article  MathSciNet  Google Scholar 

  19. Martin, R., Liu, C.: Inferential models: a framework for prior-free posterior probabilistic inference. J. Am. Stat. Assoc. 108(501), 301–313 (2013)

    Article  MathSciNet  Google Scholar 

  20. Martin, R., Liu, C.: Inferential Models: Reasoning with Uncertainty, vol. 145. CRC Press, New York (2015)

    Book  Google Scholar 

  21. Pewsey, A.: Problems of inference for Azzalini’s skewnormal distribution. J. Appl. Stat. 27(7), 859–870 (2000)

    Article  Google Scholar 

  22. Sahu, S.K., Dey, D.K., Branco, M.D.: A new class of multivariate skew distributions with applications to Bayesian regression models. Can. J. Stat. 31(2), 129–150 (2003)

    Article  MathSciNet  Google Scholar 

  23. Sartori, N.: Bias prevention of maximum likelihood estimates for scalar skew normal and skew t distributions. J. Stat. Plan. Inference 136(12), 4259–4275 (2006)

    Article  MathSciNet  Google Scholar 

  24. Schweder, T., Hjort, N.L.: Confidence and likelihood. Scand. J. Stat. 29(2), 309–332 (2002)

    Article  MathSciNet  Google Scholar 

  25. Wang, T., Li, B., Gupta, A.K.: Distribution of quadratic forms under skew normal settings. J. Multivar. Anal. 100(3), 533–545 (2009)

    Article  MathSciNet  Google Scholar 

  26. Ye, R.D., Wang, T.H.: Inferences in linear mixed models with skew-normal random effects. Acta Math. Sin. Engl. Ser. 31(4), 576–594 (2015)

    Article  MathSciNet  Google Scholar 

  27. Ye, R., Wang, T., Gupta, A.K.: Distribution of matrix quadratic forms under skew-normal settings. J. Multivar. Anal. 131, 229–239 (2014)

    Article  MathSciNet  Google Scholar 

  28. Zhu, X., Ma, Z., Wang, T., Teetranont, T.: Plausibility regions on the skewness parameter of skew normal distributions based on inferential models. In: Kreinovich, V., Sriboonchitta, S., Huynh, V.N. (eds.) Robustness in Econometrics, pp. 267–286. Springer, Cham (2017)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tonghui Wang .

Editor information

Editors and Affiliations

Appendix

Appendix

1.1 Inferential Models (IMs) for Location Parameter \(\varvec{\mu }\) When \(\varSigma \) Is Known

In general, IMs consist three steps, association step, predict step and combination step. We will follow this three steps to set up an IM for the location parameter \(\varvec{\mu }\).

Association Step. Based on the sample matrix Y which follows the distribution (7), we use the sample mean \(\overline{\varvec{Y}}\) defined by (8) following the distribution (10). Thus we obtain the potential association

$$\begin{aligned} \mathbf {\overline{Y}}=a(\varvec{\mu },\mathbf {W})=\varvec{\mu }+\mathbf {W}, \end{aligned}$$

where the auxiliary random vector \(\mathbf {W}\sim SN_p(0,\varSigma /n,\sqrt{n}\varvec{\lambda })\) but the components of \(\varvec{W}\) are not independent. So we use transformed IMs as follow, (see Martin and Liu [20] Sect. 4.4 for more detail on validity of transformed IMs). By Lemmas 1 and 3, we use linear transformations

$$\varvec{V}=A' \varSigma ^{-1/2}\varvec{W}$$

where A is an orthogonal matrix with the first column is \(\varvec{\lambda }/||\varvec{\lambda }||\), then

$$ \varvec{V}\sim SN_p(0,I_p,\varvec{\lambda ^{*}}) $$

where \(\varvec{\lambda ^{*}}=(\lambda ^{*},0,\ldots ,0)'\) with \(\lambda ^*=||\varvec{\lambda }||\). Thus each component of \(\varvec{V}\) are independent. To be concrete, let \(\varvec{V}=(V_1,\ldots ,V_p)'\), \(V_1\sim SN(0,1,\lambda ^*)\) and \(V_i\sim N(0,1)\) for \(i=2,\ldots ,p\). Therefore, we obtain a new association

$$\begin{aligned} A'\varSigma ^{-1/2}\overline{\varvec{Y}}= & {} A'\varSigma ^{-1/2}\varvec{\mu }+\varvec{V}\\= & {} A'\varSigma ^{-1/2}\varvec{\mu }+G^{-1}\left( \varvec{U}\right) \end{aligned}$$

where \(\varvec{U}=\left( U_{1},U_{2},\ldots ,U_{p}\right) '\), \(G^{-1}\left( \varvec{U}\right) =\left( G_{1}^{-1}\left( U_{1}\right) ,G_{2}^{-1}\left( U_{2}\right) ,\ldots ,G_{p}^{-1}\left( U_{p}\right) \right) '\) with \(G_{1}\left( \cdot \right) \) is the cdf of \(SN\left( 0,1,\lambda ^{*}\right) \), \(G_{i}\left( \cdot \right) \) is the cdf of \(N\left( 0,1\right) \) for \(i=2,\ldots ,p\), and \(U_{i}\)’s follow \(U\left( 0,1\right) \) independently for \(i=1,\ldots ,p\).

To make the association to be clearly presented, we write down the component wise associations as follows

where \(\left( A'\varSigma ^{-1/2}\overline{\varvec{Y}}\right) _{i}\) and \(\left( A'\varSigma ^{-1/2}\varvec{\mu }\right) _{i}\) represents the ith component of \(A'\varSigma ^{-1/2}\overline{\varvec{Y}}\) and \(A'\varSigma ^{-1/2}\varvec{\mu }\), respectively. \(G_{1}\left( \cdot \right) \) represents the cdf of \(SN\left( 0,1,\lambda ^{*}\right) \) and \(G_{i}\left( \cdot \right) \) represents the cdf of \(N\left( 0,1\right) \) for \(i=2,\ldots ,p\), and \(U_{i}\sim U\left( 0,1\right) \) are independently distributed for \(i=1,\ldots ,p\).

Thus for any observation \(\overline{\varvec{y}}\), and \(u_i \in (0,1)\) for \(i=1,\ldots ,p\), we have the solution set

$$\begin{aligned} \varTheta _{\overline{\varvec{y}}}\left( \varvec{\mu }\right)&=\left\{ \varvec{\mu }:A'\varSigma ^{-1/2}\overline{\varvec{y}}=A'\varSigma ^{-1/2}\varvec{\mu }+G^{-1}\left( \varvec{U}\right) \right\} \\&=\left\{ \varvec{\mu }:G\left( A'\varSigma ^{-1/2}\left( \overline{\varvec{y}}-\varvec{\mu }\right) \right) =\varvec{U}\right\} \end{aligned}$$

Predict Step. To predict the auxiliary vector \(\varvec{U}\), we use the default predictive random set for each components

Combine Step. By the above two steps, we have the combined set

$$ \varTheta _{\overline{\mathbf{Y}}}\left( S\right) =\left\{ \varvec{\mu }:\max \left\{ |G\left( A'\varSigma ^{-1/2}\left( \overline{\varvec{y}}-\varvec{\mu }\right) \right) -0.5|\right\} \le \max \left\{ |\mathbf{U}-0.5|\right\} \right\} . $$

where

$$\begin{aligned} \max \left\{ \left| G\left( A'\varSigma ^{-1/2}\left( \overline{\varvec{y}}-\varvec{\mu }\right) \right) -0.5\right| \right\} =\max _{i=1,\ldots ,p}\left\{ \left| \left( G\left( A'\varSigma ^{-1/2}\left( \overline{\varvec{y}}-\varvec{\mu }\right) \right) \right) _{i}-0.5\right| \right\} \end{aligned}$$

and

$$ max\left\{ \left| \varvec{U}-0.5\right| \right\} =\max _{i=1,\ldots ,p}\left\{ \left| U_{i}-0.5\right| \right\} . $$

Thus, apply above IM, for any singleton assertion \(A=\left\{ \varvec{\mu }\right\} \), by definition of believe function and plausibility function, we obtain

$$ \mathsf {bel}_{\overline{\varvec{Y}}}\left( A;\mathscr {S}\right) =P\left( \varTheta _{\overline{\varvec{Y}}}\left( \mathscr {S}\right) \subseteq A\right) =0 $$

since \(\left\{ \varTheta _{\overline{\varvec{Y}}}\left( \mathscr {S}\right) \subseteq A\right\} =\emptyset \), and

$$\begin{aligned} \mathsf {pl}_{\overline{\varvec{Y}}}\left( A;\mathscr {S}\right)&=1-\mathsf {bel}_{\overline{\varvec{Y}}}\left( A^{C};\mathscr {S}\right) =1-P_{\mathscr {S}}\left( \varTheta _{\overline{\varvec{Y}}}\left( \mathscr {S}\right) \subseteq A^{C}\right) \\&=1-\left( \max \left\{ |2 G\left( A'\varSigma ^{-1/2}\left( \overline{\varvec{y}}-\varvec{\mu }\right) \right) -1|\right\} \right) ^{p}. \end{aligned}$$

Then the Theorem 3 follows by above computations.

1.2 Robust Method for Location Parameter \(\varvec{\mu }\) When \(\varSigma \) and \(\varvec{\lambda }\) Are Known

Based on the distribution of \(\varvec{\overline{Y}}\sim SN_p(\varvec{\mu },\frac{\varSigma }{n},\sqrt{n}\varvec{\lambda })\), we obtain the confidence distribution of \(\varvec{\mu }\) given \(\overline{\varvec{y}}\) has pdf

$$ f(\varvec{\mu }|\overline{\varvec{Y}}=\overline{\varvec{y}})=2\phi (\varvec{\mu };\varvec{\overline{y}},\frac{\varSigma }{n})\varPhi (n{\varvec{\lambda } \varSigma ^{-1/2}}(\varvec{\overline{y}}-\varvec{\mu })). $$

At confidence level \(1-\alpha \), it is natural to construct the confidence set \(\mathscr {S}\), i.e. a set \(\mathscr {S}\) such that

$$\begin{aligned} P(\varvec{\mu } \in \mathscr {S})=1-\alpha . \end{aligned}$$
(20)

To choose one set out of infinity many possible sets satisfying condition (20), we follow the idea of the most robust confidence set discussed by Kreinovich [4], for any connected set \(\mathscr {S}\), defines the measure of robustness of the set \(\mathscr {S}\)

$$ r\left( \mathscr {S}\right) \equiv \max _{\varvec{y}\in \partial \mathscr {S}}f_{\overline{\varvec{Y}}}\left( \varvec{y}\right) . $$

Then at confidence level \(1-\alpha \), we obtain the most robust confidence set

$$ \mathscr {S}=\left\{ \varvec{y}:f_{\overline{Y}}\left( \varvec{y}\right) \ge c_{0}\right\} , $$

where \(c_0\) is uniquely determined by the conditions \(f_{\overline{\varvec{Y}}}(\varvec{y})\equiv c_0\) and \(\int _{\mathscr {S}}f_{\overline{\varvec{Y}}}\left( \varvec{y}\right) \text {d}\varvec{y}=1-\alpha \).

Remark 2

As mentioned by Kreinovich in [4], for Gaussian distribution, such an ellipsoid is indeed selected as a confidence set.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, Z., Chen, YJ., Wang, T., Peng, W. (2019). The Inference on the Location Parameters Under Multivariate Skew Normal Settings. In: Kreinovich, V., Thach, N., Trung, N., Van Thanh, D. (eds) Beyond Traditional Probabilistic Methods in Economics. ECONVN 2019. Studies in Computational Intelligence, vol 809. Springer, Cham. https://doi.org/10.1007/978-3-030-04200-4_11

Download citation

Publish with us

Policies and ethics