Skip to main content

Machine Learning in Control Systems: An Overview of the State of the Art

  • Conference paper
  • First Online:
Artificial Intelligence XXXV (SGAI 2018)

Abstract

Control systems are in general based on the same structure, building blocks and physics-based models of the dynamic system regardless of application, and can be mathematically analyzed w.r.t. stability, robustness and so on given certain assumptions. Machine learning methods (ML), on the other hand, are highly flexible and adaptable methods but are not subject to physic-based models and therefore lack mathematical analysis. This paper presents state of the art results using ML in the control system. Furthermore, a case study is presented where a neural network is trained to mimic a feedback linearizing speed controller for an autonomous ship. The neural network outperforms the traditional controller in case of modeling errors and measurement noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A narrated video summary is available at http://bit.ly/perceivingtrails/.

  2. 2.

    A video summary is available at http://rll.berkeley.edu/icra2016mpcgps/.

References

  1. Aastrøm, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2008)

    Google Scholar 

  2. Abdullah, L.: Fuzzy multi criteria decision making and its applications: a brief review of category. Procedia Soc. Behav. Sci. 97, 131–136 (2013)

    Article  Google Scholar 

  3. Antonelli, G.: Stability analysis for prioritized closed-loop inverse kinematic algorithms for redundant robotic systems. IEEE Trans. Robot. 25(5), 985–994 (2009)

    Article  Google Scholar 

  4. Antonelli, G., Arrichiello, F., et al.: The null-space-based behavioral control for autonomous robotic systems. Intell. Serv. Robot. 1(1), 27–39 (2008)

    Article  Google Scholar 

  5. Caharija, W., Candeloro, M., et al.: Relative velocity control and integral LOS for path following of underactuated surface vessels. In: Proceedings of the 9th IFAC Conference on Manoeuvring and Control of Marine Craft, pp. 380–385 (2012)

    Article  Google Scholar 

  6. Candeloro, M., Sørensen, A.J., et al.: Observers for dynamic positioning of ROVs with experimental results. IFAC Proc. Vol. 45(27), 85–90 (2012)

    Article  Google Scholar 

  7. Chin, C., Lau, M.: Modeling and testing of hydrodynamic damping model for a complex-shaped remotely-operated vehicle for control. J. Mar. Sci. Appl. 11(2), 150–163 (2012)

    Article  Google Scholar 

  8. Dierks, T., Jagannathan, S.: Neural network output feedback control of robot formations. IEEE Trans. Syst. Man Cybern. 40(2), 383–399 (2010)

    Article  Google Scholar 

  9. Duriez, T., Brunton, S.L., Noack, B.R.: Machine learning control (MLC). Machine Learning Control – Taming Nonlinear Dynamics and Turbulence. FMIA, vol. 116, pp. 11–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-40624-4_2

    Chapter  MATH  Google Scholar 

  10. Ellis, G.: Observers in Control Systems: A Practical Guide. Academic Press, Cambridge (2002)

    Book  Google Scholar 

  11. Fossen, T.I.: Handbook of Marine Craft Hydrodynamics and Motion Control. Wiley, Hoboken (2011)

    Book  Google Scholar 

  12. Fredriksen, E., Pettersen, K.Y.: Global kappa-exponential way-point manoeuvering of ships. In: Proceedings of the 43rd IEEE Conference on Decision and Control, pp. 5360–5367 (2004)

    Google Scholar 

  13. Goodfellow, I., Bengio, Y., et al.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  14. Grewal, M.S., Andrews, A.P.: Kalman Filtering : Theory and Practice. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  15. Guisti, A., Guzzi, J., et al.: A machine learning approach to visual perception of forest trails for mobile robots. Robot. Autom. Lett. 1(2), 661–667 (2016)

    Article  Google Scholar 

  16. Kelasidi, E., Pettersen, K.Y., et al.: A control-oriented model of underwater snake robots. In: Proceedings of the 2014 IEEE International Conference on Robotics and Biomimetics, pp. 753–760 (2014)

    Google Scholar 

  17. Khalil, H.K.: Nonlinear systems. Prentice Hall PTR, Upper Saddle River (2002)

    MATH  Google Scholar 

  18. Khatib, O.: A unified approach for motion and force control of robot manipulators: the operational space formulation. IEEE J. Robot. Autom. 3(1), 43–53 (1987)

    Article  Google Scholar 

  19. Kononenko, I.: Machine learning for medical diagnosis: history, state of the art and perspective. Artif. Intell. Med. 23(1), 89–109 (2001)

    Article  Google Scholar 

  20. Lagaris, I.E., Likas, A., et al.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998)

    Article  Google Scholar 

  21. Lagaris, I.E., Likas, A.C., et al.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw. 11(5), 1041–1049 (2000)

    Article  Google Scholar 

  22. Malek, A., Shekari Beidokhti, R.: Numerical solution for high order differential equations using a hybrid neural network – optimization method. Appl. Math. Comput. 183(1), 260–271 (2006)

    MathSciNet  MATH  Google Scholar 

  23. Moe, S., Pettersen, K.Y.: Set-based line-of-sight (LOS) path following with collision avoidance for underactuated unmanned surface vessel. In: Proceedings of the 1st Conference on Control Technology and Applications (2016)

    Google Scholar 

  24. Moe, S., Pettersen, K.Y., et al.: Line-of-sight curved path following for underactuated USVs and AUVs in the horizontal plane under the influence of ocean currents. In: Proceedings of the 1st IEEE Conference on Control Technology and Applications (2016)

    Google Scholar 

  25. Qin, J., Badgwell, T.: A survey of industrial model predictive control technology. Control Eng. Pract. 11, 733–764 (2003)

    Article  Google Scholar 

  26. Samy, I., Postlethwaite, I., et al.: Neural-network-based flush air data sensing system demonstrated on a mini air vehicle. J. Aircr. 47(1), 18–31 (2010)

    Article  Google Scholar 

  27. Sans-Muntadas, A., Pettersen, K.Y., et al.: Learning an AUV docking maneuver with a convolutional neural network. In: Proceedings of the IEEE Oceans (2017)

    Google Scholar 

  28. Seborg, D.E., Edgar, T.F., et al.: Process dynamics and control. AIChE J. 54(11), 3026–3026 (2008)

    Article  Google Scholar 

  29. Singh, S., Keller, P.: Obstacle detection for high speed autonomous navigation. In: Proceedings of the 1991 IEEE International Conference on Robotics and Automation, pp. 2798–2805 (1991)

    Google Scholar 

  30. Sirignano, J., Spiliopoulos, K.: DGM: a deep learning algorithm for solving partial differential equations (2017). http://arxiv.org/abs/1708.07469

  31. Spong, M.W., Hutchinson, S.: Robot Modeling and Control. Wiley, Hoboken (2005)

    Google Scholar 

  32. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, London (2011). https://doi.org/10.1007/978-1-84882-935-0

    Book  MATH  Google Scholar 

  33. van de Ven, P.W.J., Johansen, T.A., et al.: Neural network augmented identification of underwater vehicle models. Control Eng. Pract. 15(6), 715–725 (2007)

    Article  Google Scholar 

  34. Vidoni, R., Carabin, G., Gasparetto, A., Mazzetto, F.: Stability analysis of an articulated agri-robot under different central joint conditions. Robot 2015: Second Iberian Robotics Conference. AISC, vol. 417, pp. 335–346. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-27146-0_26

    Chapter  Google Scholar 

  35. Wu, Y., Song, Q., et al.: Robust recurrent neural network control of biped robot. J. Intell. Robot. Syst. 49(2), 151–169 (2007)

    Article  Google Scholar 

  36. Zhang, T., Kahn, G., et al.: Learning deep control policies for autonomous aerial vehicles with MPC-guided policy search. In: Proceedings of the 2016 International Conference on Robotics and Automation, pp. 528–535 (2016)

    Google Scholar 

Download references

Acknowledgments

This project has been supported through the basic funding from the Norwegian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Signe Moe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Moe, S., Rustad, A.M., Hanssen, K.G. (2018). Machine Learning in Control Systems: An Overview of the State of the Art. In: Bramer, M., Petridis, M. (eds) Artificial Intelligence XXXV. SGAI 2018. Lecture Notes in Computer Science(), vol 11311. Springer, Cham. https://doi.org/10.1007/978-3-030-04191-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-04191-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-04190-8

  • Online ISBN: 978-3-030-04191-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics